Advancing system-level verification
using UVM In SystemC

Martin Barnasconi, NXP Semiconductors
Francois Pé&cheux, University Pierre and Marie Curie
Thilo Vortler,Fraunhoferl|S/EAS

\

Ur”MC Z Fraunhofer

IRRl SORBONNE

h o
L

1S

s Outline

A Introduction
i YAOBSNAIE +SNATFTAOFGAZ2Y aSi

A Motivation
A Why UVM in SystemC?

A UVM-SystemC overview
I UVM foundation elements
I UVM test bench and test creation

A Contribution to Accellera
A Summary and outlook
A Acknowledgements

Jar Introduction: UVM- what is it?

A Universal Verification Methodology facilitates the creation of

modaular, scalable, configurable and reusable test benches
I Based on verification components with standardized interfaces

A Class library which provides a set of builh features

dedicated to simulatiorbased verification
I Utilities for phasing, component overriding (factory), configuration,
comparingscoreboardingreporting, etc.

A Environment supporting migration from directed testing

towardsCoverage Driven Verification (CDV)
I Introducing automated stimulus generation, independent result
checking and coverage collection

DESIGN & VERIHCATION

Motivation

A No structured nor unified verification Verification & Validation
methodology available for ESL design Methodology

A UVM (inSystemVerilogprimarily

targeting block/IP level (RTL) _
verification, not systerievel _— . A'V'S|

A Porting UVM to SystemC/C++ enab SYEIETEANE)
I creation of more advanced systelevel SystemC
test benches)
I reuse of verification components C++
between systerdevel and blockevel -
verification

A Targetto make UVM trulyniversa] ~ "UVM-SystemC VM implemented in
and not tied to a particular language

SystemC/C++

DESDGN & VERIFICATION

3 Why UVM in SystemC/C++ ?

CONFERENCE & EXHIBITION

A Strong need for aystem-level verification methodology for

embedded systems which include HW/SW and AMS function:
I SystemC is the recognized standard for syskevel design, and needs to
be extended with advanced verification concepts
I SystemC AMS available to cover the AMS verification needs

A Vision: Reuse tests and test benches across verification

(simulation) and validation (HW prototyping) platforms
I This requires aortable language like C++ to run tests on
HW prototypes and even measurement equipment
I EnablingHardware-in-the-Loop (Hil) simulation or Rapid Control
Prototyping (RCP)

A Benefit from proven standards and reference implementations
I Leverage from existing methodology standards and reference

Implementations, aligned with best practices in verification
5

oy UVMSystemC overview

Test bench creation withomponent classes: X
agent, sequencer, driver, monitor, scoreboaedc.

Test creatiorwith test, (virtual) sequences, etc. X
Configuration and factory mechanism X
Phasing and objections X
Policies tgorint, compare, packynpack, etc. X
Messagingnd reporting X
Register abstraction layer and callbacks development
Coverag@roups development
Constrainedandomization SCV or CRAV

6

DESIGN & VERIFICATION

UVM layered architecture

CONFERENCE & EXHIBITION

Verification enviroment(testbench) '

l »(Device
. . undertest

“i‘%“% UVM-SystemC phasing

UVMcommon phases

le——— Pre-run phases S Runtime phases S Post-run phases —— |
buildC || connect : i run Is i Jextract; check || report final¢ ||
before_en&_of_elaboration* | | end_of_simulation*
UVMruntime phase
end_of elaboration P) B
. . Legend
start_of simulation
configure main shutdown [=SsystemC process

¢ =top-down execution

pre-reset post-reset

j = bottom-up execution

reset * = System@nly callback

A UVMphasesare mappedon the System@hases

A UVMSystemC supports the 9 common phases and the
(optional) refined runtime phases

A Completion of a runtime phase happens as soon as there are
no objections (anymore) to proceed to the next phase

8

UVM agent

A Component responsible fairiving and
monitoring the DUT

A Typically contains three components
I Sequencer
I Driver
I Monitor

A Can contain analysis functionality for
basic coverage and checking

A Possible configurations

4
Se ™
- i
_______ 1
+ config !
______ 1
sequencery _______ ;!
1 .
seq_item_export | anaIyS|3 :
I___\’;___l-:
u S
seq_item_port item_collected_po
driver monitor

I Active agent: sequencer and driver are enabled

I Passive agent: only monitors signals
(sequencer and driver are disabled)

A C++ base classvm_agent

dn UVMSystem@gent

CONFERENCE & EXHIBITION

if (get.is_active ()== UVM_ACTIVB

class vip_agent :public uvm_agent — Dedicated base class tb seq > | T\
{public: distinguish agents from - agerlt ______ :
vip_sequencer <vip_trans >* sequencer; other component types : config | |
vip_driver <vip_trans >* driver; L I
vip_monitor * monitor; seqguencer —— - -- : :
Registers the object seq_item_export [angJySiSI I
UVM_COMPONENT_U(VifS agent) —— in the factory L";{-_—_- !
vip_agent (uvm_namename) L V
uvm_agent(name), sequencer(0), driver(0), monitor(0) {} seq_item_port item_collected_po
Children are : :
virtual void build_phase (uvm_phase& phase)___ | instantiated in driver monitor
{ c 3
uvm_agent:: build_phase (phase); - 12 [P 8| el

Essential call to base class F) Yy,

‘ access properties of the agent

sequencer = Vvip_sequencer <vip_trans >: type_id :: create ("sequencer”, this);

assert(sequencer);

driver = vip_driver <vip_trans >: type_id :: create ("driver", this);

assert(driver);
} :

Call to the factory which creates and

monitor = vip_monitor : type_id :: create (“monitor", this); instantiates this component dynamically
assert(monitor);

10

NOTE: UVM—SistemC APl under review 1 subject to chanie

5012 UVMSystem@gent

CONFERENCE & EXHIBITION

*
I
agent |\

 config 1
L U
_______ |
I .1
+ analysis |
virtual void connect_phase (uvm_phase& phase) E-m !
{
i i llected
if (getis_actve ()== UVM_ACTIVE seq_flem_port § - fiiem._collected_po
{ driver monitor
/I connect sequencer to driver
driver ->seq_item_port . connect (sequencer - >seq_item_export);

}
\ N y
}
Only the connection between sequencer
and driver is made here. Connection of

driver and monitor to the DUT is done via
the configuration mechanism

11

NOTE: UVM—SistemC APl under review 1 subject to chanie

11
N -':F‘
e

I\ ﬁ’ . :
Har UVM verification component

CONFERENCE & EXHIBITION

A A UVM verification component (UvMverificationcomponent énv))
(UVC) is an environment which . config '
consists of one or more - agent N
cooperating agents |

A UVCs or agents may set or get
configuration parameters J

A Anindependent test sequence is
processed by the driver via a
sequencer

A Each verification componentis | s J
connected to the DUT using a
dedicated interface

A C++ base classym_env .
D

- @
=

[5%14‘ UVM verification component

CONFERENCE & EXHIBITION

class vip_uvc :public uvm_env AUVC _is ConSide_red #Ee UVMverificationcomponent\
{ sub-environmentin large en |===—=—==-=
public: systemlevel environments (V) l conﬂg :
vip_agent * agent;
agent A
UVM_COMPONENT_UVS uvce);
vip_uvc (uvm_namename)
: uvm_eny name), agent(0) {}
virtual void build_phase (uvm_phaseX phase) Y,
{
uvm_env.: build_phase (phase);
agent = vip_agent :: type_id :: create ("agent”, this);
assert (agent);
}
i
‘\\ J)

A In this example, the UVM verification component (UVC)
contains only one agent. In practice, more agents are likely to

be instantiated
13

NOTE: UVM—SistemC APl under review 1 subject to chanie

l‘ Ve
LW = /\
2014 UVM sequences Cseasence >
CONFERENCE & EXHIBITION 1
_ Iansactici
A Sequences are part of the test scenario and J— —
define streams ofransactions _transaction
. .) 1
A The properties (or attributes) of a transaction | —

iansacti%

are captured in &equence item
A Sequences argot part of the test bench

hierarchy, but are mapped onto one or more seql D
sequencers | | -
A Sequences can be layered, hierarchical[——— 7 | Cirans)
virtual, and may contain multiple _Seql] J—
sequences or sequence items =
A Sequences and transactions can be configured =
via the factory v'm

14

Har UVMSystemGequencétem

CONFERENCE & EXHIBITION

class vip_trans :public uvm_sequence_item — Transaction |
{ : defined as W
public: - : :
int addr: Userdefined data items sequence item
int data; (randomization can be
bus_op t op; done using SCV or CRAVE)

UVM_OBJECT_UTI(8p_trans);

vip_trans (const std::string& name =" vip_trans ")
addr (0x0), data(0x0), op(BUS REAR}

virtual void do_print (uvm_printer & printer) const{... }
virtual void do_pack(uvm_packer& packer) const{ ...}
virtual void do_unpack(uvm_packer& packer){ ... }
virtual void do_copy(const uvm_object * rhs){...}

virtual bool do_compare(const uvm_object * rhs)const{...}

L \ A sequence item should implement
all elementary member functions tg
print, pack, unpack, copy and
compare the data items
(there are no field macrosin
UVMSystemC)

15

NOTE: UVM—SistemC APl under review 1 subject to chanie

DESK!N & VERIFICATION

UVI\/LSystemCS,equence

template < typename REQ = uvm_sequence_item, typename RSP = REQ>
class sequence : public uvm_sequence<REQ,RSP>

{
public:
sequence(const std::string& name) Factory registration
uvm_sequence<REQ,RSP>(name)y supports template classes

UVM_OBJECT_PARAM_UTdeGuence<REQ,RSP>); B

: : Raise objection if there i$
virtual void pre_body () { _— i
if (starting_phase !=NULL) IRIBSEIRECHICTIEs

starting_phase - >raise_objection (this);

CONFERENCE & EXHIBITION

}
_ _ A sequence contains a reques
V'rfgg o d . % and (optional) response, both
RSS* b defined as sequence item)
rsp;

Compatibility layer to SCV ol

.s't.art_item (req);)
—— CRAVE not yet available

finish_item (req); :
get_response (rsp); _ Optional: get response

}

virtual void post_body () {
if (starting_phase !=NULL) starting_phase ->drop_objection (this);

}
h
16

NOTE: UVM—SistemC APl under review 1 subject to chanie

A A test bench is the environment
whichinstantiatesand configures
the UVCs, scoreboard, and
(optional) virtual sequencer

A The test bench connects
I Agent sequencer(s) in each UVC with
the virtual sequencer (if defined)
I Monitor analysis port(s) in each UVC
with the scoreboard subscriber(s)
I Note: The driver and monitor in each

1 UVM environment (tesbench

" Testbench (env) | o:!

i virwal i (Supsgi 1 [Subsg
i sequence | i
. & °

scoreboard

" uvcl (env)‘

Sqr i confi

Drv || Mor

N\

agent connect to the DUT using the interface

stored in the configuration database
A C++ baselassuvm env

17

gars UVM-System@est bench

CONFERENCE & EXHIBITION

class testbench : public uvm_env

{
public:
vip_uvc * uvcl,
vip_uvc * uvcz; —

virt_sequencer * virtual_sequencer
scoreboard* scoreboardl;

UVM_COMPONENT_U([t#Sbench);

testbench (uvm_namename)
uvm_eny name), uvcl1(0), uvc2(0),

virtual_sequencer (0), scoreboard1(0) {}

All componentsin the
test bench will be
dynamicallynstan

tiated so they can be

overiddenby the test

if needed

virtual void build_phase (uvm_phaseX phase)

{

uvm_env.: build_phase (phase);

uvcl = vip_uvc :: type_id :: create ("uvcl',this);

" UVM_ACTME ____

assert(uvcl);

uvc2 = vip_uvc :: type_id :: create ("uvc2", this);
assert(uvc2);

set_config_int ("uvcl.*, " is_active
set_config_int ("uvc2.*', " is_active

", UVM_PASSIVE

" Testbench (env) | !

scoreboard

{ ------- N

i virtual Subs :r oval : Subsc
| sequence . .

R . . & Nt

N\

" uvcl (env)‘ [UVC2 (env)‘
agent agent
Sqr iconfi Sqr iconfi
Drv || Mon Drv || Mor
\, \ ‘ V.
Definition of active or|
passive UVCs

18

NOTE: UVM—SistemC APl under review 1 subject to chanie

3 UVMSystem@est bench

CONFERENCE & EXHIBITION

virtual_sequencer

assert(virtual_sequencer

scoreboardl =
scoreboard:: type_id :
assert(scoreboardl);
}
virtual void

= virt_sequencer
"virtual_sequencer

);

o otype_id

create (
", this);

create ("scoreboardl”, this);

Virtual sequencer points
to UVC sequencer

connect_phase (uvm_phase& phase) /
{

virtual_sequencer

uvcl- >agent - >monitor - >item_collected_port.

- >vip_seqr

scoreboardl - >xmt_listener_imp);

uvc2- >agent - >monitor - >item_collected_port.
scoreboardl - >rcv_listener_imp);

= uvcl - >agent - >sequencer,

connect (

connect (

" Testbench (env) | !

| virtual

Subs :r-e-v:ar: Subsc
| sequence . .
R . . & Nt

scoreboard

N\

N

Analysis ports of the
monitors are connected
to the scoreboard
subscribers (listeners)

UVCL1 (env) UVC2 (env)
agent agent
Sqr Econfi Sqr Econfi
Drv || Mon Drv | Mor
- V.

19

NOTE: UVM—SistemC APl under review 1 subject to chanie

’201'4' UVM test

(e
default :
= | config
TeSt Sequence -_-J

! Testbenclenv)

A Each UVM testis defined as a
dedicated C++ test class, which
Instantiates the test bench and
defines the test sequence(s)

A Reuse of tests and topologies is
possible by deriving tests from a tes|
base class

A The UVM configuration and factory
concept can be used to configure or
override UVM components,
sequences or seguence items

A C++ baselassuvm test

\. V.

20

CONFERENCE & EXHIBITION

UVM-System@est

{

flass test : public uvm—teSt\ Specific class to identify the
public: test objects for execution in
testbench * tb: the sc_main program

bool test pass;

test(uvm_namename): uvm_test (name),

UVM_COMPONENT_U(Tés$;

virtual void build_phase (uvm_phase& phasV

tb (0), test pass (true){}

The test instantiates

the required test bench

uvm_test :: build_phase (phase);
tb = testbench :: type_id :: create (" tb", this);
assert (tb);

uvm_config_db <uvm_object_wrapper *>:: set (this,

----- ™
—— default r
— | config
Test Sequence —]

i Testbenclenv)

tb.uvcl.agent.sequencer.run_phase", " default_sequence ",
vip_sequence <vip_trans >:: type_id : get(); } e

Configuration of the default sequenc
which will be executed on the
sequencer of the agent in UVC1

set_type_ override _by type (vip_ driver <vip_trans>:: get_type (),

new driver <vip_trans>:: get _type ());

——— | Factory method to override the
original driver with a new drivef

21

NOTE: UVM—SistemC APl under review 1 subject to chanie

Ly UVMSystemQ@est

CONFERENCE & EXHIBITION

e e n N
—— default :
| config
Test sequence —]
4 N
Testbenclenv) g
virtual void run_phase (uvm_phase& phase)
{
UVM_INFQO get_name(),
"* UVM TEST STARTED **", UVM_NONE
}
virtual void extract_phase (uvm_phase& phase)
{
i Th-sesmiEmEei.anar) Getr.esultof the scoreboard
test pass = false: in the extractphase
}
virtual void report_phase (uvm_phasek phase)
{ \
if (test pass) \. - J
UVM_INFQ get_name(), "** UVM TEST PASSED **", UVM_NONE
else :
UVM_ERROQRyet_name(), "** UVM TEST FAILED **"); .| Reportresults in
} the report phase
5

22

NOTE: UVM—SistemC APl under review 1 subject to chanie

CONFERENCE & EXHIBITION

s W i ==)
A The toplevel (e.gsc_main) Test -O'Gfa“'t config|

. Sequence ““““ 4
contains the test(s) and the DUT “Téstbenceny) (eomig]
A The interface to which the DUT i (=== [scoreboard
. . 1 ovirt i
connected is stored in the ,S;;Lt;ﬁce, P e |S“3bsﬂ

-—’-——- 1

configuration database, so it can| | | ~Z

be used by the UVCs to connect Ungle(: 2 ruvgje(: 2
to the DUT “sar| contl || || ser [[cont]

A The test to be executed is either orv] [mo orv [o
defined by the test class S —J)
Instantiation or by the argument %

of the member functiomun_test \ DUT b

Themainprogra

m

CONFERENCE & EXHIBITION - \
top (sc_main)
int sc_main(int , char*[]) Instantiate y= N\
r’ —)
{ / the D:CJT and Test default " config'
dut* my_dut =new dut (" my_dut"); laleice=s § /5 sequence = veemees .
vip_if *vif uvcl =new vip_if ; 'E'estbencf(env) config |
VLIl SMILIER SRt SR register interface (mem———- N scoreboard
using the configuration i virtual l Subsck| ref ||Subs
/ database I Sequence} mode!
N
uvm_config_db <vip_if *>:: set (0, "*.uvcl.*", e ’ {
"vif ", vif_uvcl); [\ M ()
uvm_config_db <vip_if *>:: set (0, "*.uvc2.*", ,l‘-‘JVC]' (env) VUVCZ (env)
"vif ", vif_uvc2); Y aggp_t_\ agg_n_t_\
Sqr | confi Sqr Econfi
my_dut- >in(vif_uvcl - >sig_a); Connect DUT ta — —
my_dut- >out(vif_uvc2 ->sig_a); the interface Drv || Mo Drv | Mo
) >
test (“test"); — —
e e \ Register the test to b h - A /
egister ine test 10 pe ’ o
sc_start (); . . !
- 0 executed. This function :)
return O _ also_dynamlcally_ S N DUT -
} instantiates the test if
given as argument
_ .
24

NOTE: UVI\/I—SistemC APl under review 1 subject to chanie

VS
Y —

Contribution to Accellera

A Obijective: seek further industry
support and standardization of

UVM in SystemC

A UVMSystemC contribution to

Accellera Verification WG
I UVM-SystemC Language Reference
Manual (LRM)
I UVM-SystemC Proaff-Concept
Implementation, released under
Apache 2.0 license

A Align with SCV and Multianguage

UVM-SystemC
(UVM-SO)

Language Reference Manual

LODRAFT

requirements and future
developments

6.4 uvm_factory

The class wvm_factory izsplements a factory patem. A singleton factory Emstance b crasted for 2 given simalation
run Object and componsnt fypes ave registersd with the Sactory wsing proxies to the actsal chjects 2ad compensnts
being cratod. Tha classes uvm_object_regizery<T= and uvim_compenent_registryT= ars nsed to prexy chjects
of typs wvm_shject and urm_component respectively. Thess registry chauses both uie e wvm_object_wrapper

wv_tactory (1 ;

v emetemy il

/f Group: Registericg types

void dn register” [uwm_shiest wrsppart obi (@ S0 ix registar® fn DU standa

up: Type & instance cversides

25

DESIGN & VERIFICATION
T B Te=b

Summary and outlook

A Universal Verification Methodology created in SystemC/C++
I Fully compliant with UVM standard
I Targetis to make all essential features of UVM available in
SystemC/C++
I UVMSystemC language definition and pradfconcept
Implementation contributed to Accellera Systems Initiative

A Ongoing developments
I Extend UVMSystemC with constrained randomization capabilities
using SystemC Verification Library (SCV) or CRAVE
I Introduction of assertions and functional coverage features
I Add reqister abstraction layer and callback mechanism
I Introduce System®@MS to support AMS systelavel verification

Acknowledgements

A The development of the UVI8ystemC methodology and
library has been supported by the European Commission as
part of the Seventh FramewokrogrammgFP7) for Research
and Technological Development in the project 'VERIFICATIOI
FOR HETEROGENOUS RELIABLE DESIGN AND INTEGRA
(VERDI).

The research leading to these results has received funding
from the European Commission under grand agreement No
287562.

HOW STAN PROUFERATE:
(S AfC CHARGERS, me&RDaugmm INSTANT MESSAGING, ETC)

17! RDICULoLS! SOON:
WE NEED To DEVELOP
SITUATION: || SEVRVERAL SHORE | | SiTuATION:
THERE. ARE USE. CASES. VEAH THERE ARE
4 COMPETING \ ® il I5 COMPETING
STANDPRDS. STANDPRDS.

)

xkcd.com

