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Jar Introduction: UVM- what is it?

A Universal Verification Methodology facilitates the creation of

modaular, scalable, configurable and reusable test benches
I Based on verification components with standardized interfaces

A Class library which provides a set of builh features

dedicated to simulatiorbased verification
I Utilities for phasing, component overriding (factory), configuration,
comparingscoreboardingreporting, etc.

A Environment supporting migration from directed testing

towardsCoverage Driven Verification (CDV)
I Introducing automated stimulus generation, independent result
checking and coverage collection




DESIGN & VERIHCATION

Motivation

A No structured nor unified verification Verification & Validation
methodology available for ESL design Methodology

A UVM (inSystemVerilogprimarily

targeting block/IP level (RTL) _
verification, not systerievel _— . A'V'S|

A Porting UVM to SystemC/C++ enab SYEIETEANE)
I creation of more advanced systelevel SystemC
test benches )
I reuse of verification components C++
between systerdevel and blockevel -
verification

A Targetto make UVM trulyniversa] ~ "UVM-SystemC VM implemented in
and not tied to a particular language

SystemC/C++




DESDGN & VERIFICATION

3 Why UVM in SystemC/C++ ?

CONFERENCE & EXHIBITION

A Strong need for aystem-level verification methodology for

embedded systems which include HW/SW and AMS function:
I SystemC is the recognized standard for syskevel design, and needs to
be extended with advanced verification concepts
I SystemC AMS available to cover the AMS verification needs

A Vision: Reuse tests and test benches across verification

(simulation) and validation (HW prototyping) platforms
I This requires aortable language like C++ to run tests on
HW prototypes and even measurement equipment
I EnablingHardware-in-the-Loop (Hil) simulation or Rapid Control
Prototyping (RCP)

A Benefit from proven standards and reference implementations
I Leverage from existing methodology standards and reference

Implementations, aligned with best practices in verification
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oy UVMSystemC overview

Test bench creation withomponent classes: X
agent, sequencer, driver, monitor, scoreboaedc.

Test creatiorwith test, (virtual) sequences, etc. X
Configuration and factory mechanism X
Phasing and objections X
Policies tgorint, compare, packynpack, etc. X
Messagingnd reporting X
Register abstraction layer and callbacks development
Coverag@roups development
Constrainedandomization SCV or CRAV
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DESIGN & VERIFICATION

UVM layered architecture

CONFERENCE & EXHIBITION

Verification enviroment(testbench) '

l »(  Device
. . undertest




“i‘%“% UVM-SystemC phasing

UVMcommon phases

le——— Pre-run phases S Runtime phases S Post-run phases —— |
buildC || connect : i run Is i Jextract; check || report final¢ ||
before_en&_of_elaboration* | | end_of_simulation*
UVMruntime phase
end_of elaboration P ) B
. . Legend
start_of simulation
configure main  shutdown [ =SsystemC process

¢ =top-down execution

pre-reset post-reset

j = bottom-up execution

reset * = System@nly callback

A UVMphasesare mappedon the System@hases

A UVMSystemC supports the 9 common phases and the
(optional) refined runtime phases

A Completion of a runtime phase happens as soon as there are
no objections (anymore) to proceed to the next phase
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UVM agent

A Component responsible fairiving and
monitoring the DUT

A Typically contains three components
I Sequencer
I Driver
I Monitor

A Can contain analysis functionality for
basic coverage and checking

A Possible configurations

4
Se ™
- i
_______ 1
+ config !
______ 1
sequencery _______ ;!
1 .
seq_item_export | anaIyS|3 :
I___\’;___l-:
u S
seq_item_port item_collected_po
driver monitor

I Active agent: sequencer and driver are enabled

I Passive agent: only monitors signals
(sequencer and driver are disabled)

A C++ base classvm_agent



dn  UVMSystem@gent

CONFERENCE & EXHIBITION

if (  get.is_active ()== UVM_ACTIVB

class vip_agent :public  uvm_agent — Dedicated base class tb seq > | T\
{public: distinguish agents from - agerlt ______ :
vip_sequencer <vip_trans >* sequencer; other component types : config | |
vip_driver <vip_trans >* driver; L I
vip_monitor * monitor; seqguencer —— - -- : :
Registers the object seq_item_export [ angJySiSI I
UVM_COMPONENT_U(VifS agent ) —— in the factory L";{-_—_- !
vip_agent ( uvm_namename) L V
uvm_agent( name ), sequencer(0 ), driver(0), monitor(0) {} seq_item_port item_collected_po
Children are : :
virtual void build_phase ( uvm_phase& phase)___ | instantiated in driver monitor
{ c 3
uvm_agent:: build_phase (phase); - 12 [P 8| el

Essential call to base class F) Yy,

‘ access properties of the agent

sequencer = Vvip_sequencer <vip_trans >: type_id :: create ("sequencer”, this);

assert(sequencer);

driver =  vip_driver <vip_trans >: type_id :: create ("driver", this);

assert(driver);
} :

Call to the factory which creates and

monitor = vip_monitor : type_id :: create (“monitor", this); instantiates this component dynamically
assert(monitor);
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5012 UVMSystem@gent

CONFERENCE & EXHIBITION

*
I
agent |\
_______ |
| - |
 config 1
L U
_______ |
I .1
+ analysis |
virtual void connect_phase ( uvm_phase& phase ) E-m !
{
i i llected
if ( getis_actve ()== UVM_ACTIVE seq_flem_port § - fiiem._collected_po
{ driver monitor
/I connect sequencer to driver
driver ->seq_item_port . connect (sequencer - >seq_item_export );

}
\ N y
}
Only the connection between sequencer
and driver is made here. Connection of

driver and monitor to the DUT is done via
the configuration mechanism
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Har UVM verification component

CONFERENCE & EXHIBITION

A A UVM verification component (UvMverificationcomponent énv))
(UVC) is an environment which . config '
consists of one or more - agent N
cooperating agents |

A UVCs or agents may set or get
configuration parameters J

A Anindependent test sequence is
processed by the driver via a
sequencer

A Each verification componentis | s J
connected to the DUT using a
dedicated interface

A C++ base classym_env .
D
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[5%14‘ UVM verification component

CONFERENCE & EXHIBITION

class vip_uvc :public uvm_env AUVC _is ConSide_red #Ee UVMverificationcomponent\
{ sub-environmentin large en |===—=—==-=
public: systemlevel environments ( V) l conﬂg :
vip_agent * agent;
agent A
UVM_COMPONENT_UVS uvce );
vip_uvc ( uvm_namename )
: uvm_eny name ), agent(0) {}
virtual void build_phase ( uvm_phaseX phase) Y,
{
uvm_env.: build_phase (phase);
agent = vip_agent :: type_id :: create ("agent”, this);
assert (agent);
}
i
‘\\ J)

A In this example, the UVM verification component (UVC)
contains only one agent. In practice, more agents are likely to

be instantiated
13
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2014 UVM sequences Cseasence >
CONFERENCE & EXHIBITION 1
_ Iansactici
A Sequences are part of the test scenario and J— —
define streams ofransactions _transaction
. . ) 1
A The properties (or attributes) of a transaction | —

iansacti%

are captured in &equence item
A Sequences argot part of the test bench

hierarchy, but are mapped onto one or more  seql D
sequencers | | -
A Sequences can be layered, hierarchical[——— 7 | Cirans)
virtual, and may contain multiple _Seql] J—
sequences or sequence items =
A Sequences and transactions can be configured =
via the factory v'm
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Har UVMSystemGequencétem

CONFERENCE & EXHIBITION

class vip_trans :public uvm_sequence_item — Transaction |
{ : defined as W
public: - : :
int addr: Userdefined data items sequence item
int data; (randomization can be
bus_op t op; done using SCV or CRAVE)

UVM_OBJECT_UTI(8p_trans );

vip_trans ( const std::string& name =" vip_trans ")
addr (0x0), data(0x0), op( BUS REAR}

virtual void do_print ( uvm_printer & printer ) const{... }
virtual void do_pack( uvm_packer& packer ) const{ ...}
virtual void do_unpack( uvm_packer& packer){ ... }
virtual void do_copy(const uvm_object * rhs ){...}

virtual bool do_compare(const uvm_object * rhs )const{...}

L \ A sequence item should implement
all elementary member functions tg
print, pack, unpack, copy and
compare the data items
(there are no field macrosin
UVMSystemC)

15
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DESK!N & VERIFICATION

UVI\/LSystemCS,equence

template < typename REQ = uvm_sequence_item, typename RSP = REQ>
class sequence : public uvm_sequence<REQ,RSP>

{
public:
sequence( const std::string& name ) Factory registration
uvm_sequence<REQ,RSP>( name )y supports template classes

UVM_OBJECT_PARAM_UTdeGuence<REQ,RSP>); B

: : Raise objection if there i$
virtual void pre_body () { _— i
if (  starting_phase  !=NULL) IRIBSEIRECHICTIEs

starting_phase - >raise_objection  (this);

CONFERENCE & EXHIBITION

}
_ _ A sequence contains a reques
V'rfgg o d . % and (optional) response, both
RSS* b defined as sequence item )
rsp;

Compatibility layer to SCV ol

.s't.art_item (req); )
—— CRAVE not yet available

finish_item (req); :
get_response (rsp); _ Optional: get response

}

virtual void post_body () {
if ( starting_phase !=NULL) starting_phase ->drop_objection (this);

}
h
16
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A A test bench is the environment
whichinstantiatesand configures
the UVCs, scoreboard, and
(optional) virtual sequencer

A The test bench connects
I Agent sequencer(s) in each UVC with
the virtual sequencer (if defined)
I Monitor analysis port(s) in each UVC
with the scoreboard subscriber(s)
I Note: The driver and monitor in each

1 UVM environment (tesbench

" Testbench (env) | o:!

i virwal i (Supsgi 1 [Subsg
i sequence | i
. & °

scoreboard

" uvcl (env)‘

_____

_____

Sqr i confi

Drv || Mor

N\

agent connect to the DUT using the interface

stored in the configuration database
A C++ baselassuvm env

17



gars  UVM-System@est bench

CONFERENCE & EXHIBITION

class testbench : public uvm_env

{
public:
vip_uvc * uvcl,
vip_uvc * uvcz; —

virt_sequencer * virtual_sequencer
scoreboard* scoreboardl;

UVM_COMPONENT_U([t#Sbench );

testbench ( uvm_namename)
uvm_eny name ), uvcl1(0), uvc2(0),

virtual_sequencer (0), scoreboard1(0) {}

All componentsin the
test bench will be
dynamicallynstan

tiated so they can be

overiddenby the test

if needed

virtual void build_phase ( uvm_phaseX phase)

{

uvm_env.: build_phase (phase);

uvcl = vip_uvc :: type_id :: create ("uvcl',this);

" UVM_ACTME ____

assert(uvcl);

uvc2 = vip_uvc :: type_id :: create ("uvc2", this);
assert(uvc2);

set_config_int  ("uvcl.*, " is_active
set_config_int  ("uvc2.*', " is_active

", UVM_PASSIVE

" Testbench (env) | !

scoreboard

{ ------- N

i virtual Subs :r oval : Subsc
| sequence . .

R . . & Nt

N\

" uvcl (env)‘ [ UVC2 (env)‘
agent agent
Sqr iconfi Sqr iconfi
Drv || Mon Drv || Mor
\, \ ‘ V.
Definition of active or|
passive UVCs

18
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3 UVMSystem@est bench

CONFERENCE & EXHIBITION

virtual_sequencer

assert( virtual_sequencer

scoreboardl =
scoreboard:: type_id :
assert(scoreboardl);
}
virtual void

= virt_sequencer
"virtual_sequencer

);

o otype_id

create (
", this);

create ("scoreboardl”, this);

Virtual sequencer points
to UVC sequencer

connect_phase ( uvm_phase& phase ) /
{

virtual_sequencer

uvcl- >agent - >monitor - >item_collected_port.

- >vip_seqr

scoreboardl - >xmt_listener_imp );

uvc2- >agent - >monitor - >item_collected_port.
scoreboardl - >rcv_listener_imp  );

= uvcl - >agent - >sequencer,

connect (

connect (

" Testbench (env) | !

| virtual

Subs :r-e-v:ar: Subsc
| sequence . .
R . . & Nt

scoreboard

N\

N

Analysis ports of the
monitors are connected
to the scoreboard
subscribers (listeners)

UVCL1 (env) UVC2 (env)
agent agent
Sqr Econfi Sqr Econfi
Drv || Mon Drv | Mor
- V.
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’201'4' UVM test

( e
default :
= | config
TeSt Sequence -_-J

! Testbenclenv)

A Each UVM testis defined as a
dedicated C++ test class, which
Instantiates the test bench and
defines the test sequence(s)

A Reuse of tests and topologies is
possible by deriving tests from a tes|
base class

A The UVM configuration and factory
concept can be used to configure or
override UVM components,
sequences or seguence items

A C++ baselassuvm test

\. V.

20



CONFERENCE & EXHIBITION

UVM-System@est

{

flass test : public uvm—teSt\ Specific class to identify the
public: test objects for execution in
testbench * tb: the sc_main program

bool test pass;

test( uvm_namename): uvm_test ( name),

UVM_COMPONENT_U(Tés$;

virtual void build_phase ( uvm_phase& phasV

tb (0), test pass (true){}

The test instantiates

the required test bench

uvm_test :: build_phase (phase);
tb = testbench :: type_id :: create (" tb", this);
assert (tb);

uvm_config_db <uvm_object_wrapper *>:: set ( this,

----- ™
—— default r
— | config
Test Sequence —]

i Testbenclenv)

tb.uvcl.agent.sequencer.run_phase", " default_sequence ",
vip_sequence <vip_trans >:: type_id : get(); } e

Configuration of the default sequenc
which will be executed on the
sequencer of the agent in UVC1

set_type_ override _by type (vip_ driver <vip_trans>:: get_type (),

new driver <vip_trans>:: get _type () );

——— | Factory method to override the
original driver with a new drivef

21
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Ly UVMSystemQ@est

CONFERENCE & EXHIBITION

e e n N
—— default :
| config
Test sequence —]
4 N
Testbenclenv) g
virtual void run_phase ( uvm_phase& phase )
{
UVM_INFQO get_name(),
"* UVM TEST STARTED **", UVM_NONE
}
virtual void extract_phase ( uvm_phase& phase )
{
i Th-sesmiEmEei.anar ) Getr.esultof the scoreboard
test pass = false: in the extractphase
}
virtual void report_phase ( uvm_phasek phase )
{ \
if (  test pass ) \. - J
UVM_INFQ get_name(), "** UVM TEST PASSED **", UVM_NONE
else :
UVM_ERROQRyet_name(), "** UVM TEST FAILED **" ); .| Reportresults in
} the report phase
5

22

NOTE: UVM—SistemC APl under review 1 subject to chanie



CONFERENCE & EXHIBITION

s W i == )
A The toplevel (e.gsc_main) Test -O'Gfa“'t config|

. Sequence ““““ 4
contains the test(s) and the DUT “Téstbenceny)  (eomig]
A The interface to which the DUT i (=== [ scoreboard
. . 1 ovirt i
connected is stored in the ,S;;Lt;ﬁce, P e |S“3bsﬂ

-—’-——- 1

configuration database, so it can| | | ~Z

be used by the UVCs to connect Ungle(: 2 ruvgje(: 2
to the DUT “sar| contl || || ser [[cont]

A The test to be executed is either orv] [mo orv [ o
defined by the test class S —J )
Instantiation or by the argument %

of the member functiomun_test \ DUT b




Themainprogra

m

CONFERENCE & EXHIBITION - \
top (sc_main)
int  sc_main(int , char*[]) Instantiate y= N\
r’ — )
{ / the D:CJT and Test default " config'
dut* my_dut =new dut (" my_dut"); laleice=s § /5 sequence = veemees .
vip_if *vif uvcl =new  vip_if ; 'E'estbencf(env)  config |
VLIl SMILIER SRt SR register interface (mem———- N scoreboard
using the configuration i virtual l Subsck| ref ||Subs
/ database I Sequence} mode!
N
uvm_config_db <vip_if *>:: set (0, "*.uvcl.*", e ’ {
"vif ", vif_uvcl); [\ M ( )
uvm_config_db <vip_if *>:: set (0, "*.uvc2.*", ,l‘-‘JVC]' (env) VUVCZ (env)
"vif ", vif_uvc2); Y aggp_t_\ agg_n_t_\
Sqr | confi Sqr Econfi
my_dut- >in(vif_uvcl - >sig_a); Connect DUT ta — —
my_dut- >out(vif_uvc2 ->sig_a); the interface Drv || Mo Drv | Mo
) >
test (“test"); — —
e e \ Register the test to b h - A /
egister ine test 10 pe ’ o
sc_start (); . . !
- 0 executed. This function : )
return O _ also_dynamlcally_ S N DUT -
} instantiates the test if
given as argument
\_ .
24
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Contribution to Accellera

A Obijective: seek further industry
support and standardization of

UVM in SystemC

A UVMSystemC contribution to

Accellera Verification WG
I UVM-SystemC Language Reference
Manual (LRM)
I UVM-SystemC Proaff-Concept
Implementation, released under
Apache 2.0 license

A Align with SCV and Multianguage

UVM-SystemC
(UVM-SO)

Language Reference Manual

LODRAFT

requirements and future
developments

6.4 uvm_factory

The class wvm_factory izsplements a factory patem. A singleton factory Emstance b crasted for 2 given simalation
run Object and componsnt fypes ave registersd with the Sactory wsing proxies to the actsal chjects 2ad compensnts
being cratod. Tha classes uvm_object_regizery<T= and uvim_compenent_registryT= ars nsed to prexy chjects
of typs wvm_shject and urm_component respectively. Thess registry chauses both uie e wvm_object_wrapper

wv_tactory (1 ;

v emetemy il

/f Group: Registericg types

void dn register” [ uwm_shiest wrsppart obi (@ S0 ix registar® fn DU standa

up: Type & instance cversides
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DESIGN & VERIFICATION
T B Te=b

Summary and outlook

A Universal Verification Methodology created in SystemC/C++
I Fully compliant with UVM standard
I Targetis to make all essential features of UVM available in
SystemC/C++
I UVMSystemC language definition and pradfconcept
Implementation contributed to Accellera Systems Initiative

A Ongoing developments
I Extend UVMSystemC with constrained randomization capabilities
using SystemC Verification Library (SCV) or CRAVE
I Introduction of assertions and functional coverage features
I Add reqister abstraction layer and callback mechanism
I Introduce System®@MS to support AMS systelavel verification
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