SYSTEMC

The TLM 2.0 Mixed Endianness
Example

James Aldis
Texas Instruments France
January 2008

Modification of “It” Example

= Demonstrates the use of TLM endianness-conversion f unctions

lllustrates data and address modification effects o f BIG- and LITTLE-
endian initiators sharing a memory

Allows interactive experimentation

= |nteractively execute “instructions” alternately on two initiators

—one big- and one little-endi an
—store data fromBE and view it fromLE or vice-versa
—store 32-bit data and view as 8-bit or 16-bit, etc

Platform Structure

. tIminitiator_socket . tI mtarget socket -

How to run this example (Linux)

» Set SYSTEMC HOVE

"cd examples/tImlIt _m xed endi an/ bui | d-uni x
" make

" make run (uses default input)

= /lt.exe (interactive iInput)

How to run this example (MSVC)
= Open a explorer window on
exanples/tlmlt _m xed endi an/ bui | d-w ndows
= Launchlt.sln
= Select ‘Property Manager’ from the ‘View’ menu

= Under ‘It_extension_mandatory > Debug | WIin32" select
‘'systemc’

= Select ‘Properties’ from the ‘View’ menu

= Select ‘User Macros’ under ‘Common Properties’

= Update the ‘SYSTEMC' entry and apply
= Select ‘Debugging’ under ‘Configuration Properties’—_
SYSTEMZC

Component details

Generator 101
— 32-bit Big-endian initiator
— stdin provides instructions to execute (loads and st ores)
— stdin provides data for stores
— data from loads written to stdout
Generator 102

— |dentical but Little-endian

Instruction Set for both Generators

— 18, 116, 132 (load byte, halfword or word)

— S8, s16, s32 (store byte, halfword or word)

— w (switch control to other generator)

— g (quit)

— see exanpl es/tIm | t_m xed_endi an/resul ts/input.txt forexample
instructions

Bus and Memory

— Exactly as in It example
— Some kind of 32-bit routing and memory system

The System Being Modelled

= Both memories are simple arrays
of 4-byte words

= Neither the memories nor the 10-bit 4-bit byte 32-bit 32-bit
Interconnect is aware of the address enable datain data out
endianness of the transactions A

_ _ n_we n_ce
= Neither the memories nor the

interconnect does any data
modification:
\ 4 \ 4

— what the initiators put on the bus
goes unchanged to the memory

v
32-bit Memory

= Memories are endianness-neutral

— provide a consistent memory image Component
to BE and to LE initiators
— “What | write, | read back the same” 1024 WordS / 4 kByte

— there are no attributes on the
hardware bus except those shown
opposite

The System Being Modelled

address data in byte enable
= “What the other writes, | may
: ’ 0 00 10 XX XX A5 XX 0010
read back at a different N | | | | | |
address” bitindex: 8 4 0 24 16 8 O 3 0

_ Address bus takes the index of the
= Example 1. single byte access correct 32-bit word (66/4 = 16).

o : Fractional part of the address (2) used
— BE initiator writes byte AS to inside initiator to select a byte lane

address 66 = 64 + 2 according to big-endian convention
* see opposite for hardware (more significant bits are at lower
bus signals addresses)
— LE initiator will find it at address data out byte enable
address 65=64 + 1
* see opposite for hardware | 00010 | | XX XX AS XX | | 0010 |
bus signals bitindex: 8 4 0 24 16 8 O 3 0

Little-endian convention is that more
significant bits are at higher
addresses. To get the same data,
fractional part of the address is 1

The System Being Modelled

address data in byte enable
= “What the other writes, | may read | 0 00 40 | | 04 03 02 01 | | 1111 |
back at a different address” bitindex: 8 4 0 24 16 8 O 3 0
= Same effect for aligned 16-bit or Address bus takes the index of the
32-bit data correct 32-bit word (256/4 = 64).

Big-endian convention is that more
significant bits of the integer are at

= Example 2: 32-bit integer access lower addresses, which are at more
significant bits of the bus data word.

— But no address change for 32-bit

— BE initiator writes 32-bit integer
04030201 to address 256

* see opposite for hardware bus address data out byte enable
signals
uEe looo4o0| [04030201|[1111]
— LE initiator will find the same data
at the same address bitindex: 8 4 0 24 16 8 O 3 0
* see opposite for hardware bus Little-endian convention is that more

signals o : :
J significant bits of the integer are at

higher addresses, which are at more
significant bits of the bus data word.

Therefore it is the same as big-endian!

The System Being Modelled

= “What the other writes, | may
read back distorted” address data in byte enable

= Example 3: write 4 consecutive | 00000 | | 04 03 02 01 | | i Atk b |
bytes and read back as an pjtindexx 8 4 0 2416 8 0 3 0

Integer Big-endian convention is that more
— BE initiator writes bytes 04, 03, significant bits of the data bus word
02, 01 to addresses 0, 1, 2, 3 are lower addresses.
* see opposite for hardware
bus signals
— Both initiators will read the address data in byte enable

integer 04030201 at address 0
— LE initiator writes bytes 04, 03, | 00000 | | 010205 04 | | 1111 |

02, 01 to addresses 0, 1, 2, 3 bitindex: 8 4 O 24 16 8 O 3 0

* I))))
See o_ppOSIte for hardware Little-endian convention is that more

bu_s -S.Ignals _ significant bits of the data bus word
— Both initiators will read the are higher addresses.
integer 01020304 at address 0

The TLM Model of the System

= The TLM model correctly models the above data and a ddress distortions
and all other possible ones

— In particular it gets hairy for non-address-aligned transactions
= The address, data array and byte enable array in th e transaction payload
object are

— identical to the internal opcode of the initiator
+ if the initiator endianness matches the host CPU end lanness

— modified
+ if the initiator endianness is different from the ho st CPU’s
= The internal data storage of the memory models

— is not visible (we are not using DMI in this example)

— But could be a simple memcpy() between the data arr ay in the transaction
payload object and an array of unsigned char in the memory model

= Therefore we can say that
— the TLM 2.0 interfaces are always “host-endian”

= Model is functionally identical on BE and LE host C PUs

— but internal structure (length, address, byte enabl es) of transaction payload
objects will differ

