
Accellera Standard OVL V2
Library Reference Manual

Software Version 2.8.1

March 2014

© 2005-2014 Accellera Systems Initiative
All rights reserved.

License and Statement of Use of Accellera System Initiative's Open Verification Library

This product is licensed under the Apache Software Foundation's Apache License, Version 2.0, January 2004. The full license is
available at: http://www.apache.org/licenses/. This Agreement governs the terms and conditions of use that apply to Accellera
Systems Initiative's Open Verification Library ("OVL")

Accellera Systems Initiative standards documents are developed within Accellera Systems Initiative and the Technical Committee of
Accellera Systems Initiative Inc. Accellera Systems Initiative develops its standards through a consensus development process,
approved by its members and board of directors, which brings together volunteers representing varied viewpoints and interests to
achieve the final product. Volunteers are not necessarily members of Accellera Systems Initiative and serve without compensation.
While Accellera Systems Initiative administers the process and establishes rules to promote fairness in the consensus development
process, Accellera Systems Initiative does not independently evaluate, test, or verify the accuracy of any of the information contained
in its standards.

Use of an Accellera Systems Initiative standard is wholly voluntary. Accellera Systems Initiative disclaims liability for any personal
injury, property or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or
indirectly resulting from the publication, use of, or reliance upon this, or any other Accellera Systems Initiative standard document. By
using an Accellera Systems Initiative standard, you agree to defend, indemnify and hold harmless Accellera Systems Initiative and
their directors, officers, employees and agents from and against all claims and expenses, including attorneys' fees, arising out of your
use of an Accellera Systems Initiative standard.

Accellera Systems Initiative does not warrant or represent the accuracy or content of the material contained herein, and expressly
disclaims any express or implied warranty, including any implied warranty of merchantability or suitability for a specific purpose, or
that the use of the material contained herein is free from patent infringement. Accellera Systems Initiative standards documents are
supplied "AS IS."

The existence of an Accellera Systems Initiative standard does not imply that there are no other ways to produce, test, measure,
purchase, market, or provide other goods and services related to the scope of an Accellera Systems Initiative standard. Furthermore,
the viewpoint expressed at the time a standard is approved and issued is subject to change due to developments in the state of the
art and comments received from users of the standard. Every Accellera Systems Initiative standard is subjected to review periodically
for revision and update. Users are cautioned to check to determine that they have the latest edition of any Accellera Systems
Initiative standard.

In publishing and making this document available, Accellera Systems Initiative is not suggesting or rendering professional or other
services for, or on behalf of, any person or entity. Nor is Accellera Systems Initiative undertaking to perform any duty owed by any
other person or entity to another. Any person utilizing this, and any other Accellera Systems Initiative standards document, should
rely upon the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

Accellera Systems Initiative may change the terms and conditions of this Statement of Use from time to time as we see fit and in our
sole discretion. Such changes will be effective immediately upon posting, and you agree to the posted changes by continuing your
access to or use of an Accellera Systems Initiative standard or any of its content in whatever form.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific
applications. When the need for interpretations is brought to the attention of Accellera Systems Initiative, Accellera Systems Initiative
will initiate action to prepare appropriate responses. Since Accellera Systems Initiative standards represent a consensus of
concerned interests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests. For
this reason, Accellera Systems Initiative and the members of its Technical Committee are not able to provide an instant response to
interpretation requests except in those cases where the matter has previously received formal consideration.

Comments for revision of Accellera Systems Initiative standards are welcome from any interested party, regardless of membership
affiliation with Accellera Systems Initiative. Suggestions for changes in documents should be in the form of a proposed change of
text, together with appropriate supporting comments. Comments on standards and requests for interpretations should be addressed
to:

Accellera Systems Initiative Inc.
1370 Trancas Street #163, Napa, CA 94558, USA
E-mail: info@accellera.org

Note
Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
validity of any patent rights in connection therewith. Accellera Systems Initiative shall not be responsible for
identifying patents for which a license may be required by an Accellera Systems Initiative standard or for
conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Accellera Systems Initiative is the sole entity that may authorize the use of Accellera Systems Initiative-owned certification marks
and/or trademarks to indicate compliance with the materials set forth herein.

Authorization to photocopy, redistribute, publish, create derivative works from, sub-license or charge others to access or use,
participate in the transfer or sale of, or directly or indirectly commercially exploit in whole or part of any Accellera Systems Initiative
standard for internal or personal use must be granted by Accellera Systems Initiative Inc., provided that permission is obtained from
and any required fee is paid to Accellera Systems Initiative. To arrange for authorization please contact Lynn Bannister, Accellera
Systems Initiative, 1370 Trancas Street #163, Napa, CA 94558, 707-251-9977, lynn@accellera.org.

Permission to photocopy portions of any individual standard for educational classroom use can also be obtained from Accellera
Systems Initiative.

Overview of this standard

This section describes the purpose and organization of this standard, the Accellera Standard Open Verification Library (Std. OVL)
libraries implemented in IEEE Std. 1364-1995 Verilog and SystemVerilog 3.1a, Accellera’s extensions to IEEE Std. 1364-2001
Verilog Hardware Description Language and Library Reference Manual (LRM)

Intent and scope of this document

The intent of this standard is to define Std. OVL accurately. Its primary audience is designers, integrators and verification engineers
to check for good/bad behavior, and provides a single and vendor-independent interface for design validation using simulation, semi-
formal and formal verification techniques. By using a single well-defined interface, the OVL bridges the gap between the different
types of verification, making more advanced verification tools and techniques available for non-expert users.

From time to time, it may become necessary to correct and/or clarify portions of this standard. Such corrections and clarifications may
be published in separate documents. Such documents modify this standard at the time of their publication and remain in effect until
superseded by subsequent documents or until the standard is officially revised.

ACKNOWLEDGEMENTS

These Accellera Systems Initiative OVL Libraries and Library Reference Manual (LRM) were specified and developed by experts
from many different fields, including design and verification engineers, Electronic Design Automation companies and members of the
OVL VSVA technical committee. The following contributors were involved in the creation of previous versions of the OVL: Bryan
Bullis, Ben Cohen, Himanshu Goel, Vijay Gupta, Brent Hayhoe, Richard Ho, Dmitry Korchemny, Narayanan Krishnamurthy, David
Lacey, Jim Lewis, Andrew MacCormack, Erich Marschner, Paul Menchini, Torkil Oelgaard, Uma Polisetti, Joseph Richards, Erik
Seligman, Vinaya Singh, Sean Smith, Andy Tsay, Mike Turpin, Bipul Talukdar, and others.

The OVL technical committee and chair reports to Accellera TC Chairman:

TC Chairman Karen Pieper

The following individuals contributed to the creation, editing and review of the Accellera Systems Initiative OVL Libraries and LRM:
Alan Becker/ARM, Shalom Bresticker/Intel, Eduard Cerny/Synopsys, Harry Foster/Mentor Graphics, Vijay Shanker
Gottimukkula/Synchronicity, Jerry Kaczinsky/Aldec, David Lacey/Hewlett Packard, Kenneth Elmkjær Larsen/Mentor Graphics (OVL
Chair), Ramesh Sathianathan/Mentor Graphics, Chris Shaw/Mentor Graphics, Manoj Kumar Thottasseri/Synopsys .

Major version 2.0 released June 2007
Minor version 2.1 released September 2007
Minor version 2.2 released January 2008
Minor version 2.3 released June 2008
Minor version 2.4 released March 2009
Minor version 2.5 released July 2010
Minor version 2.6 released November 2011
Minor version 2.7 released January 2013
Minor version 2.8 released September 2013
Minor version 2.8.1 released March 2014

Accellera Standard OVL V2 LRM, 2.8.1 5
March 2014

Table of Contents

Chapter 1
Introduction. 7

About this Manual . 7
Notational Conventions . 8

Assertion Syntax Format. 8
References . 9

Chapter 2
OVL Basics . 11

OVL Assertion Checkers . 12
HDL Implementations . 12
OVL Checker Characteristics . 17

Verilog OVL . 26
Library Directory Structure. 26
Use Model. 27
Header Files . 32

VHDL OVL . 43
Library Directory Structure. 43
Use Model. 44
Primary VHDL Packages . 53

Chapter 3
OVL Checkers. 71

ovl_always . 72
ovl_always_on_edge . 75
ovl_arbiter . 80
ovl_bits. 86
ovl_change . 90
ovl_code_distance . 96
ovl_coverage . 99
ovl_crc . 102
ovl_cycle_sequence . 113
ovl_decrement . 120
ovl_delta. 123
ovl_even_parity . 127
ovl_fifo. 130
ovl_fifo_index . 137
ovl_frame . 142
ovl_handshake . 149
ovl_hold_value. 156
ovl_implication . 160
ovl_increment . 163

Table of Contents

6
March 2014

Accellera Standard OVL V2 LRM, 2.8.1

ovl_memory_async . 166
ovl_memory_sync . 172
ovl_multiport_fifo . 179
ovl_mutex . 188
ovl_never . 191
ovl_never_unknown. 194
ovl_never_unknown_async . 197
ovl_next . 200
ovl_next_state . 206
ovl_no_contention . 210
ovl_no_overflow . 214
ovl_no_transition . 217
ovl_no_underflow . 221
ovl_odd_parity . 224
ovl_one_cold . 227
ovl_one_hot . 232
ovl_proposition . 235
ovl_quiescent_state . 238
ovl_range . 242
ovl_reg_loaded. 245
ovl_req_ack_unique. 249
ovl_req_requires . 253
ovl_stack . 258
ovl_time . 263
ovl_transition . 269
ovl_unchange . 273
ovl_valid_id . 279
ovl_value . 284
ovl_value_coverage . 287
ovl_width . 290
ovl_win_change . 294
ovl_win_unchange . 297
ovl_window . 300
ovl_xproduct_bit_coverage . 303
ovl_xproduct_value_coverage . 309
ovl_zero_one_hot. 317

Appendix A
OVL Macros . 321

Global Macros . 321
Macros Common to All Assertions . 324
Macros for Specific Assertions . 326

Appendix B
OVL Backward Compatibility . 329

V2.3. 329

Accellera Standard OVL V2 LRM, 2.8.1 7
March 2014

Chapter 1
Introduction

Welcome to the Accellera standard Open Verification Library V2 (OVL). The OVL is
composed of a set of assertion checkers that verify specific properties of a design. These
assertion checkers are instantiated in the design establishing a unifying methodology for
dynamic and formal verification.

OVL V2 is a superset of OVL V1 that includes all V1 checkers. The OVL V2 augments the
structure of the V1 original checkers by adding parameters, ports and control logic. These new
checker versions are similar, but not completely identical to their V1 counterparts. The V1
checker types were named with an “assert_” prefix and their V2 counterparts are named with an
“ovl_” prefix, with the same base names. For backward compatibility, all OVL V1 checkers
(assert_* checkers) are available and supported in OVL V2. So, all existing code utilizing OVL
V1 will function the same with OVL V2 (except for bug fixes and enhancements).

The OVL provides designers, integrators and verification engineers with a single, vendor-
independent interface for design validation using simulation, hardware acceleration or
emulation, formal verification and semi-/hybrid-/dynamic-formal verification tools. By using a
single, well defined, interface, the OVL bridges the gap between different types of verification,
making more advanced verification tools and techniques available for non-expert users.

This document provides the reader with a set of data sheets that describe the functionality of
each assertion checker in the OVL V2, as well as examples that show how to embed these
assertion checkers into a design.

About this Manual
It is assumed the reader is familiar with hardware description languages and conventional
simulation environments. This document targets designers, integrators and verification
engineers who intend to use the OVL in their verification flow and to tool developers interested
in integrating the OVL in their products. This document has the following chapters:

• OVL Basics

Fundamental information about the OVL library, including usage and examples.

• OVL Assertion Data Sheets

Data sheet for each type of OVL assertion checker.

• OVL Defines

Information about the define values used in general and for configuring the checkers.

Accellera Standard OVL V2 LRM, 2.8.18

Introduction
Notational Conventions

March 2014

Notational Conventions
The following textual conventions are used in this manual:

Syntax statements appear in sans-serif typeface as shown here. In syntax statements, words in
italics are meta-variables. You must replace them with relevant literal values. Words in regular
(non-italic) sans-serif type are literals. Type them as they appear. Except for the following
meta-characters, regular characters in syntax statements are literals. The following meta-
characters have the given syntactical meanings. You do not type these characters.

Assertion Syntax Format
OVL V2 checker types are named ovl_checker. OVL V2 checkers are instantiated in Verilog
and VHDL modules/entities with specified parameters/generics and connections to checker
ports. Each checker type’s data sheet shows a model of its checker’s instance statement in a
language-neutral mnemonic syntax statement. A checker type has parameters/generics common
to all checkers and parameters/generics specific to its own type. The parameter/generic
identifiers in a checker type’s syntax statement are shown in this order:

severity_level, [checker specific parameter/generic identifiers],
property_type, msg, coverage_level, clock_edge, reset_polarity,
gating_type

A checker type has port identifiers common to all checkers and ports specific to its own type.
The port identifiers in a checker type’s syntax statement are declared in this order:

clock*, reset, enable, [checker specific ports], fire

except (*) that asynchronous checker types have no clock port and multiclock checker types
have multiple clock ports.

 emphasis Italics in plain text are used for two purposes: (1) titles of manual chapters and
appendixes, and (2) terminology used inside defining sentences.

variable Italics in courier text indicate a meta-variable. You must replace the meta-variable
with a literal value when you use the associated statement.

literal Regular courier text indicates literal words used in syntax statements, code or in
output.

[] Square brackets indicate an optional entry.

Introduction
References

Accellera Standard OVL V2 LRM, 2.8.1 9
March 2014

References
The following is a list of resources related to design verification and assertion checkers.

• Bening, L. and Foster, H., Principles of Verifiable RTL Design, a Functional Coding
Style Supporting Verification Processes in Verilog, 2nd Ed., Kluwer Academic
Publishers, 2001.

• Bergeron, J., Writing Testbenches: Functional Verification of HDL Models, Kluwer
Academic Publishers, 2000.

• Bergeron, J., Cerny, E., Hunter, A., and Nightingale, A., Verification Methodology
Manual for SystemVerilog, Springer, 2005, ISBN 978-0-387-25538-5.

• Foster, H., Krolnik, A., Lacey, D. Assertion-Based Design, Kluwer Academic
Publishers, 2003.

Accellera Standard OVL V2 LRM, 2.8.110

Introduction
References

March 2014

Accellera Standard OVL V2 LRM, 2.8.1 11
March 2014

Chapter 2
OVL Basics

The OVL is composed of a set of assertion checkers that verify specific properties of a design.
These assertion checkers are instantiated in the design establishing a unifying methodology for
dynamic and formal verification.

OVL assertion checkers are instances of modules whose purpose in the design is to guarantee
that some conditions hold true. Assertion checkers are composed of one or more properties, a
message, a severity and coverage.

• Properties are design attributes that are being verified by an assertion. A property can be
classified as a combinational or temporal property.

A combinational property defines relations between signals during the same clock cycle
while a temporal property describes the relation between the signals over several
(possibly infinitely many) cycles.

• Message is a string that is displayed in the case of an assertion failure.

• Severity indicates whether the error captured by the assertion library is a major or minor
problem.

• Coverage indicates whether or not specific corner-case events occur and counts the
occurrences of specific events.

Assertion checkers benefit users by:

• Testing internal points of the design, thus increasing observability of the design.

• Simplifying the diagnosis and detection of bugs by constraining the occurrence of a bug
to the assertion checker being checked.

• Allowing designers to reuse the same assertions for different methodologies, typically
simulation and formal verification.

Accellera Standard OVL V2 LRM, 2.8.112

OVL Basics
OVL Assertion Checkers

March 2014

OVL Assertion Checkers
Assertion checkers address design verification concerns and can be used as follows to increase
design confidence:

• Combine assertion checkers to increase the coverage of the design (for example, in
corner-case behavior or interface protocols).

• Include assertion checkers when a module has an external interface. In this case,
assumptions on the correct input and output behavior should be guarded and verified.

• Include assertion checkers when interfacing with third party modules, since the designer
may not be familiar with the module description (as in the case of IP cores), or may not
completely understand the module. In these cases, guarding the module with assertion
checkers may prevent incorrect use of the module.

• Some IP providers embed assertions with their designs, so they can be turned on for
integration checking.

Usually there is a specific assertion checker suited to cover a potential problem. In other cases,
even though a specific assertion checker might not exist, a combination of two or three assertion
checkers can provide the desired verification checks. It is also possible to combine an OVL
assertion with additional HDL logic to check for the desired behavior. The number of actual
assertions that must be added to a specific design may vary from a few to thousands, depending
on the complexity of the design and the complexity of the properties that must be checked.

Writing assertion checkers for a given design requires careful analysis and planning for
maximum efficiency. While writing too few assertions might not achieve the desired level of
checking in a design, writing too many assertions may increase verification time, sometimes
without increasing the coverage. In most cases, however, the runtime penalty incurred by
adding assertion checkers is relatively small.

HDL Implementations
Designers instantiate OVL assertion checkers as logic components in design code. Two
variations are available, corresponding to the two “base” HDL language families: Verilog and
VHDL. Checker assertion and coverage logic can be instantiated in several different standard
implementations. The current implementations are in five IEEE languages:

• Verilog Family

• Verilog 1995 (IEEE 1364),

• SVA 2005 (IEEE 1800),

• PSL 2005 (IEEE 1850).

OVL Basics
OVL Assertion Checkers

Accellera Standard OVL V2 LRM, 2.8.1 13
March 2014

• VHDL

• VHDL 1993 (IEEE 1076),

• PSL 2005 (IEEE 1850).

Not all checker types have been implemented in all HDLs. Table 2-1 shows the currently
implemented checker types with √ marks. The table shows the checker types that have full fire
output ports implemented with ⇒ marks. Fire outputs of the other types of checkers are
currently tied low. Green () indicates the checker type is implemented in all languages; red
() indicates the checker type is implemented only in SVA; and wheat () indicates the
checker type is implemented in some other combination.

Checker implementations that are synthesizable are indicated with synth. You must specify
OVL_SYNTHESIS (see “Generating Synthesizable Logic” on page 27) to disable
unsynthesizable logic for these checkers. “Synthesizing the VHDL OVL Library” on page 51
shows how to instantiate synthesizable VHDL checker logic.

Table 2-1. OVL Library

Verilog VHDL

checker type Verilog-95 SVA-05 PSL-05 VHDL-93 PSL-05

ovl_always √ ⇒ synth √ ⇒ √ √ ⇒ synth √

ovl_always_on_edge √ √ √ √

ovl_arbiter √

ovl_bits √

ovl_crc √

ovl_change √ √ √ √

ovl_code_distance √

ovl_coverage √

ovl_cycle_sequence √ ⇒ synth √ ⇒ √ √ ⇒ synth √

ovl_decrement √ √ √ √

ovl_delta √ √ √ √

ovl_even_parity √ √ √ √

ovl_fifo √

ovl_fifo_index √ √ √ √

ovl_frame √ √ √ √

ovl_handshake √ √ √ √

ovl_hold_value √

Accellera Standard OVL V2 LRM, 2.8.114

OVL Basics
OVL Assertion Checkers

March 2014

ovl_implication √ ⇒ synth √ ⇒ √ √ ⇒ synth √

ovl_increment √ √ √ √

ovl_memory_async √

ovl_memory_sync √

ovl_multiport_fifo √

ovl_mutex √

ovl_never √ ⇒ synth √ ⇒ √ √ ⇒ synth √

ovl_never_unknown √ ⇒ synth √ ⇒ √ √ ⇒ synth √

ovl_never_unknown_async √ √ √ √ ⇒ synth √

ovl_next √ ⇒ synth √ ⇒ √ √ ⇒ synth √

ovl_next_state √

ovl_no_contention √

ovl_no_overflow √ √ √ √

ovl_no_transition √ √ √ √

ovl_no_underflow √ √ √ √

ovl_odd_parity √ √ √ √

ovl_one_cold √ √ √ √

ovl_one_hot √ ⇒ synth √ ⇒ √ √ ⇒ synth √

ovl_proposition √ √ √ √

ovl_quiescent_state √ √ √ √

ovl_range √ ⇒ synth √ ⇒ √ √ ⇒ synth √

ovl_reg_loaded √

ovl_req_ack_unique √

ovl_req_requires √

ovl_stack √

ovl_time √ √ √ √

ovl_transition √ √ √ √

ovl_unchange √ √ √ √

ovl_valid_id √

Table 2-1. OVL Library

Verilog VHDL

checker type Verilog-95 SVA-05 PSL-05 VHDL-93 PSL-05

OVL Basics
OVL Assertion Checkers

Accellera Standard OVL V2 LRM, 2.8.1 15
March 2014

OVL V1-Style Checkers
For backward-compatibility with designs that use OVL V1 checkers, the OVL V2 library
includes copies of the checkers from the V1 library (updated with code fixes, but having the
same “footprints” as the V1 library checkers). These checker types are recognized by their
“assert_” prefixes. Table 2-2 shows the V1-style OVL library’s checker types’
implementations. None of these checker types have fire outputs because the fire ports were new
on the ovl_* checkers. The V1-style checkers have no outputs, so their logic is optimized out by
synthesis tools (i.e., no V1-style checkers are synthesizable).

ovl_value √

ovl_value_coverage √

ovl_width √ √ √ √

ovl_win_change √ √ √ √

ovl_win_unchange √ ⇒ synth √ ⇒ √ √

ovl_window √ √ √ √

ovl_xproduct_bit_coverage √

ovl_xproduct_value_covera
ge

√

ovl_zero_one_hot √ ⇒ synth √ ⇒ √ √ ⇒ synth √

Table 2-2. OVL V1-Style Checkers

 Verilog

checker type Verilog-95 SVA-05 PSL-05

assert_always √ √ √

assert_always_on_edge √ √ √

assert_change √ √ √

assert_cycle_sequence √ √ √

assert_decrement √ √ √

assert_delta √ √ √

assert_even_parity √ √ √

assert_fifo_index √ √ √

assert_frame √ √ √

Table 2-1. OVL Library

Verilog VHDL

checker type Verilog-95 SVA-05 PSL-05 VHDL-93 PSL-05

Accellera Standard OVL V2 LRM, 2.8.116

OVL Basics
OVL Assertion Checkers

March 2014

assert_handshake √ √ √

assert_implication √ √ √

assert_increment √ √ √

assert_never √ √ √

assert_never_unknown √ √ √

assert_never_unknown_async √ √ √

assert_next √ √ √

assert_no_overflow √ √ √

assert_no_transition √ √ √

assert_no_underflow √ √ √

assert_odd_parity √ √ √

assert_one_cold √ √ √

assert_one_hot √ √ √

assert_proposition √ √ √

assert_quiescent_state √ √ √

assert_range √ √ √

assert_time √ √ √

assert_transition √ √ √

assert_unchange √ √ √

assert_width √ √ √

assert_win_change √ √ √

assert_win_unchange √ √ √

assert_window √ √ √

assert_zero_one_hot √ √ √

Table 2-2. OVL V1-Style Checkers

 Verilog

checker type Verilog-95 SVA-05 PSL-05

OVL Basics
OVL Assertion Checkers

Accellera Standard OVL V2 LRM, 2.8.1 17
March 2014

OVL Checker Characteristics

Checker Class
OVL assertion checkers are partitioned into the following checker classes:

• Combinational assertions — behavior checked with combinational logic.

• 1-cycle assertions — behavior checked in the current cycle.

• 2-cycle assertions — behavior checked for transitions from the current cycle to the next.

• n-cycle assertions — behavior checked for transitions over a fixed number of cycles.

• Event-bounded assertions — behavior is checked between two events.

Checker Parameters/Generics
Each OVL assertion checker has its own set of parameters as described in its corresponding data
sheet (“OVL Checkers” on page 71). The following parameters are (typically) common to all
checkers: severity_level, property_type, msg, coverage_level, clock_edge, reset_polarity and
gating_type. Each of these types of parameters has a default value used when the corresponding
checker parameter is unspecified in the checker instance specification. These defaults are set by
the following global Verilog macros (which can be modified): OVL_SEVERITY_DEFAULT,
OVL_PROPERTY_DEFAULT, OVL_MSG_DEFAULT, OVL_COVER_DEFAULT,
OVL_CLOCK_EDGE_DEFAULT, OVL_RESET_POLARITY_DEFAULT and
OVL_GATING_TYPE_DEFAULT (see “Setting Checker Parameter Defaults” on page 28).
VHDL OVL_CTRL_DEFAULTS are set in the ovl_ctrl_record record (see “ovl_ctrl_record
Record” on page 45).

The checker parameters/generics can be assigned instance-specific values using the appropriate
Verilog macros or VHDL constants defined in the std_ovl_defines.h and std_ovl.vhd files
respectively. The macro and constant identifier names are the same in both HDLs.

severity_level

A checker’s “severity level” determines how to handle an assertion violation. The severity_level
parameter sets the checker’s severity level and can have one of the following values:

If severity_level is not one of these values, the checker issues the following message:

OVL_FATAL Runtime fatal error (simulation stops).

OVL_ERROR Runtime error.

OVL_WARNING Runtime warning (e.g., software warning).

OVL_INFO Information only (no improper design functionality).

Accellera Standard OVL V2 LRM, 2.8.118

OVL Basics
OVL Assertion Checkers

March 2014

Illegal option used in parameter ’severity_level’

property_type

A checker’s “property type” determines whether to use the assertion as an assert property or an
assume property (for example, a property that a formal tool uses to determine legal stimulus).
The property type also selects whether to assert/assume X/Z value checks or not. The
property_type parameter sets the checker’s property type and can have one of the following
values:

If property_type is not one of these values, an assertion violation occurs and the checker issues
the following message:

Illegal option used in parameter ’property_type’

msg

The default value of OVL_MSG_DEFAULT is “VIOLATION”. Changing this define provides
a default message printed when a checker assertion is violated. To override this default message
for an individual checker, set the checker’s msg parameter.

coverage_level

A checker’s “coverage level” determines the cover point information reported by the individual
checker. The coverage_level parameter sets the checker’s coverage level. This parameter can be
any bitwise-OR of the defined cover point type values (“Cover Points” on page 24 and
“Monitoring Coverage” on page 28):

For example, if the coverage_level parameter for an instance of the assert_range checker is:

OVL_ASSERT Assert assertion check and X/Z check properties.

OVL_ASSUME Assume assertion check and X/Z check properties.

OVL_ASSERT_2STATE Assert assertion check properties. Ignore X/Z check properties.

OVL_ASSUME_2STATE Assume assertion check properties. Ignore X/Z check properties.

OVL_IGNORE Ignore assertion check and X/Z check properties. Used to turn off
checking while maintaining coverage collection. To switch off
sets of assertions, define macros for the property types, for
example: ‘define MY_OVL_CHECKS_OFF ‘OVL_IGNORE.

OVL_COVER_SANITY Report SANITY cover points.

OVL_COVER_BASIC Report BASIC cover points.

OVL_COVER_CORNER Report CORNER cover points.

OVL_COVER_STATISTIC Report STATISTIC cover points.

OVL Basics
OVL Assertion Checkers

Accellera Standard OVL V2 LRM, 2.8.1 19
March 2014

OVL_COVER_BASIC + OVL_COVER_CORNER

then the checker reports all three assert_range cover points (cover_test_expr_change,
cover_test_expr_at_min and cover_test_expr_at_max). To simplify instance specifications, two
additional cover point values are defined:

clock_edge

A checker’s “clock edge” selects the active edges for the clock input to the checker. Edge-
triggered checkers perform their analyses—which include evaluating inputs, checking
assertions and updating counters—at the active edges of their clocks. The elapsed time from one
active clock edge to the next is referred to as a clock cycle (or simply cycle). The clock_edge
parameter specifies the checker’s active clock edges and can have one of the following values:

reset_polarity

A checker’s “reset polarity” selects the active level of the checker reset input. When reset
becomes active, the checker clears pending properties and internal values (coverage point
values remain unchanged). A subsequent edge of the reset signal makes reset inactive, which
initializes and activates the checker. The reset_polarity parameter sets the checker’s reset
polarity and can have one of the following values:

gating_type

A checker’s “gating type” selects the signal gated by the enable input. The gating_type
parameter can be set to one of the following values:

OVL_COVER_NONE Disable coverage reporting.

OVL_COVER_ALL Report information for all cover points.

OVL_POSEDGE Rising edges are active clock edges.

OVL_NEGEDGE Falling edges are active clock edges.

OVL_ACTIVE_LOW Reset is active when FALSE.

OVL_ACTIVE_HIGH Reset is active when TRUE.

OVL_GATE_NONE Checker ignores the enable input.

OVL_GATE_CLOCK Checker pauses when enable is FALSE. The checker treats the
current cycle as a NOP. Checks, counters and internal values
remain unchanged.

OVL_GATE_RESET Checker resets (as if the reset input became active) when enable
is FALSE.

Accellera Standard OVL V2 LRM, 2.8.120

OVL Basics
OVL Assertion Checkers

March 2014

Checker Ports
Each OVL assertion checker has its own set of ports as described in its corresponding data
sheet. The following ports are (typically) common to all checkers.

clock

Each “edge-triggered” assertion checker has a clocking input port named clock. All of the
checker’s sampling, assertion checking and coverage collection tasks are performed at “active”
edges of the checker’s clock input. The active clock edges are set by the checker’s clock_edge
parameter (page 18): OVL_POSEDGE (rising edges) or OVL_NEGEDGE (falling edges). The
default clock_edge parameter is set by the following global variable:

Gating clock

If a checker’s gating_type parameter (page 18) is set to OVL_GATE_CLOCK, the checker’s
enable signal gates the clock input to the checker. Here the actual clock signal used internally by
the checker is the gated clock formed combinationally from clock and enable. Deasserting
enable in effect pauses the checker at the current state. No data ports are sampled; no checking
is performed; no counters are incremented; and no coverage data are collected. When enable
asserts again, the checker continues from the state it was “paused” by enable.

The internal clock for a checker (called clk) is formed combinationally from clock and possibly
enable (based on the gating type and active clock edge for the checker) using the following
logic:

wire gclk, clk;
‘ifdef OVL_GATING_OFF

assign gclk = clock; // Globally disabled gating
‘else

// LATCH based gated clock
reg clken;
always @ (clock or enable) begin

if (clock == 1’b0)
clken <= enable;

end
assign gclk = (gating_type == ‘OVL_GATE_CLOCK) ? clock & clken

: clock; // Locally disabled gating
‘endif // OVL_GATING_OFF
// clk (programmable edge & optional gating)
assign clk = (clock_edge == ‘OVL_POSEDGE) ? gclk : ~gclk;

Note that setting the OVL_GATING_OFF define disables clock (and reset) gating for all
checkers.

OVL_CLOCK_EDGE_DEFAULT Sets the default clock_edge parameter value for checkers.
Default: OVL_POSEDGE.

OVL Basics
OVL Assertion Checkers

Accellera Standard OVL V2 LRM, 2.8.1 21
March 2014

reset

Each assertion checker has a reset input port named reset. Associated with the reset port is the
checker’s reset_polarity parameter: OVL_ACTIVE_LOW (reset active when FALSE) or
OVL_ACTIVE_HIGH (reset active when TRUE). The default reset_polarity parameter is set
by the following global variable:

When a checker that is not in reset mode samples an active reset, the checker enters reset mode.
The checker cancels pending assertion checks and freezes coverage data at their current values.
At the next active clock edge that reset is not active, the checker exits reset mode. The checker
initializes assertion properties and the checker behaves as it started from its initialized state—
except coverage data continues from the values frozen during the reset interval.

Gating reset

If a checker’s gating_type parameter is set to OVL_GATE_RESET, its enable signal ‘gates’ the
reset input to the checker. Here the reset signal used internally by the checker is the gated input
formed combinationally from reset and enable (and inverted if reset is active high). The enable
input acts as a second, active-low reset.

The internal reset for a checker (called reset_n) is formed combinationally from reset and
possibly enable using the following logic:

wire greset, reset_n;
‘ifdef OVL_GATING_OFF

assign greset = reset; // Globally disabled gating
‘else

assign greset = (gating_type == ‘OVL_GATE_RESET) ? reset & enable
: reset; // Locally disabled gating

‘endif // OVL_GATING_OFF
// reset_n (programmable polarity & optional gating)
assign reset_n = (reset_polarity == ‘OVL_ACTIVE_LOW) ? greset : ~greset;

Global Reset

The reset port assignments of all assertion checkers can be overridden and controlled by the
following global variable:

Internally, each checker uses the reset signal defined by OVL_RESET_SIGNAL:

// Selecting global reset or local reset for the checker reset signal

OVL_RESET_POLARITY_
DEFAULT

Sets the default reset_polarity parameter value for checkers.
Default: OVL_ACTIVE_LOW.

OVL_GLOBAL_RESET=
reset_signal

Overrides the reset port assignments of all assertion checkers
with the specified global reset_signal. Checkers ignore their
reset_polarity parameters and treat the global reset as an active-
low reset. Default: each checker’s reset is specified by the reset
port and reset_polarity parameters.

Accellera Standard OVL V2 LRM, 2.8.122

OVL Basics
OVL Assertion Checkers

March 2014

‘ifdef OVL_GLOBAL_RESET
‘define OVL_RESET_SIGNAL ‘OVL_GLOBAL_RESET

‘else
‘define OVL_RESET_SIGNAL reset_n

‘endif

enable

Each assertion checker has an enabling input port named enable. This input is used to gate
either the clock or reset signals for the checker (effectively pausing or resetting the checker).
The effect of the enable port on the checker is determined by the checker’s gating_type
parameter (page 18):

• OVL_GATE_NONE (no effect),

• OVL_GATE_CLOCK (gate clock, see “Gating clock” on page 19) or

• OVL_GATE_RESET (gate reset, see “Gating reset” on page 20).

The default gating_type parameter is set by the following global variable:
OVL_GATING_TYPE_DEFAULT (default: OVL_GATE_CLOCK).

fire

Each assertion checker has a fire signal output port named fire. Future OVL releases might
extend this output, so extra bits are reserved for future use. For the V2.8 release of OVL, this is
a 3-bit port:

‘define OVL_FIRE_WIDTH 3

The fire output port has the following bits:

A fire bit is set to '1' in the cycle in which the violation occurs and reset to '0' in the next cycle
by a clocked process. The following macros are defined for accessing individual fire bits:

‘define OVL_FIRE_2STATE 0
‘define OVL_FIRE_XCHECK 1
‘define OVL_FIRE_COVER 2

Assertion Checks
Each assertion checker verifies that its parameter values are legal. If an illegal option is
specified, the assertion fails. The assertion checker also checks at least one assertion. Violation
of any of these assertions is an assertion failure. The data sheet for the assertion shows the

fire[0] Assertion fired in 2-state mode (an assertion check violation).

fire[1] X/Z check fired in non-2-state mode.

fire[2] Coverage fired.

OVL Basics
OVL Assertion Checkers

Accellera Standard OVL V2 LRM, 2.8.1 23
March 2014

various failure types for the assertion checker (except for incorrect option values for
severity_level, property_type, coverage_level, clock_edge, reset_polarity and gating_type).

For example, the ovl_frame checker data sheet shows the following types of assertion failures:

X/Z Checks
Assertion checkers can produce indeterminate results if a checker port value contains an X or Z
bit when the checker samples the port. (Note that a checker does not necessarily sample every
port at every active clock edge.) To assure determinate results, assertion checkers have special
assertions for X/Z checks. These assertions fall into two groups: explicit X/Z checks and
implicit X/Z checks (see “Checking X and Z Values” on page 29). (Note that OVL does not
differentiate between X and Z values.)

Explicit X/Z Checks

Two assertion checker types are specifically designed to verify that their associated expressions
have known and driven values: ovl_never_unknown and ovl_never_unknown_async. Each has
a single assertion check:

Explicit X/Z checking is implemented when instances of these checkers are added explicitly to
verify relevant expressions. Setting OVL_XCHECK_OFF turns off all X/Z checks, both
explicit and implicit (in particular, all ovl_never_unknown and ovl_never_unknown_async
checkers are excluded).

Implicit X/Z Checks

All assertion checker types — except ovl_never_unknown and ovl_never_unknown_async —
have implicit X/Z checks. These are assertions that specific checker ports have known and

FRAME Value of test_expr was TRUE before min_cks cycles after
start_event was sampled TRUE or its value was not TRUE
before max_cks cycles transpired after the rising edge of
start_event.

illegal start event The action_on_new_start parameter is set to
OVL_ERROR_ON_NEW_START and start_event expression
evaluated to TRUE while the checker was monitoring test_expr.

min_cks > max_cks The min_cks parameter is greater than the max_cks parameter
(and max_cks >0). Unless the violation is fatal, either the
minimum or maximum check will fail.

test_expr contains X/Z
value

Expression evaluated to a value with an X or Z bit, and
OVL_XCHECK_OFF is not set.

Accellera Standard OVL V2 LRM, 2.8.124

OVL Basics
OVL Assertion Checkers

March 2014

driven values when the checker samples the ports. For example, the ovl_frame checker type has
the following implicit X/Z checks:

Implicit checking is implemented inside the checker logic itself. For many checkers, implicit
X/Z-check violations are not triggered for every occurrence of a sampled X/Z value for the
associated checker port. For example, consider the ovl_implication checker, which has X/Z
checks for antecedent_expr and consequent_expr:

Cases b and c are not reported as X/Z-check violations, because in both cases the assertion is not
violated—regardless of which 0/1 value the X/Z-valued expression takes in 2-state semantics.
Such intelligent handling of X/Z checks eliminates many “false” violations that would be
reported when a pessimistic view of X/Z values is assumed.

Setting OVL_IMPLICIT_XCHECK_OFF turns off the implicit X/Z checks, but not the explicit
X/Z checks.

Cover Points
Each assertion type (typically) has a set of cover points and each cover point is categorized by
its cover point type. For example, the ovl_range assertion type has the following cover points:

The various cover point types are:

test_expr contains X
or Z

Expression value was X or Z.

start_event contains X
or Z

Start event value was X or Z.

antecedent_expr consequent_expr Assertion fails?

a True X/Z if consequent_expr is False

b False X/Z no

c X/Z True no

d X/Z False if antecedent_expr is True

e X/Z X/Z if antecedent_expr is True and consequent_expr
is False

cover_test_expr_change BASIC — Expression changed value.

cover_test_expr_at_min CORNER — Expression evaluated to min.

cover_test_expr_at_max CORNER — Expression evaluated to max.

SANITY Event that indicates that the logic monitored by the assertion
checker was activated at least at a minimal level.

OVL Basics
OVL Assertion Checkers

Accellera Standard OVL V2 LRM, 2.8.1 25
March 2014

Cover Groups
Some assertion types have one or more defined cover groups. Each cover group consists of one
or more bin registers that accumulate coverage counts for corresponding coverage points. Some
bin registers are two-dimensional, where the bin indexes represent the various cover cases being
tracked and the bin values represent the associated coverage counts. For example, the
ovl_valid_id assertion type has the two following cover groups:

BASIC (Default) Event that indicates that the logic monitored by the
assertion checker assumed a state where assertion checking can
occur.

CORNER Event that indicates that the logic monitored by the assertion
checker assumed a state that represents a corner-case behavior.

STATISTIC Counts of relevant states assumed by the logic monitored by the
assertion checker.

observed_latency Number of returned IDs with the specified turnaround time. Bins
are:
• observed_latency_good[min_cks:max_cks] — bin index is

the observed turnaround time in clock cycles.
• observed_latency_bad — default.

outstanding_ids Number of cycles with the specified number of outstanding ids.
Bins are:
• observed_outstanding_ids[0:max_instances] — bin index is

the instance ID.

Accellera Standard OVL V2 LRM, 2.8.126

OVL Basics
Verilog OVL

March 2014

Verilog OVL
The Verilog HDL Family OVL library has the following characteristics:

• All Verilog assertion checkers conform to Verilog IEEE Standard 1364-1995. Top-level
files are either called assert_checker.vlib or ovl_checker.v (new in V2), and
include the relevant logic (Verilog, SVA or PSL).

• All System Verilog assertion checkers conform to Accellera SVA 2005 (IEEE 1800).

• Header files use file extension .h.

• Verilog files with assertion module/interfaces use extension .vlib and include assertion
logic files in the language specified by the user.

• Verilog files with assertion logic use file extension _logic.v.

• System Verilog files with assertion logic use file extension _logic.sv.

• Parameter settings are assigned with macros to make configuration of assertion checkers
consistent and simple to use by end users.

• Parameters passed to assertion checkers are checked for legal values

• Each assertion checker includes std_ovl_defines.h defining all global variables and
std_ovl_task.h defining all OVL system tasks.

• Global variables are named OVL_name.

• System tasks are named ovl_taskname_t.

• OVL V2 is backward compatible in behavior with existing OVL V1 libraries, because
OVL V2 includes the assert_checker modules.

Library Directory Structure
The Accellera OVL standard Verilog library has the following structure:

$STD_OVL_DIR Installation directory of Accellera OVL library.

$STD_OVL_DIR/vlog95 Directory with assertion logic described in Verilog 2005
(IEEE 1364).

$STD_OVL_DIR/sva05 Directory with assertion logic described in SVA 2005
(IEEE 1800).

$STD_OVL_DIR/psl05 Directory with assertion logic described in PSL 2005 (IEEE
1850).

$STD_OVL_DIR/psl05/vunits Directory with PSL1.1 vunits for binding with the assertion
logic.

OVL Basics
Verilog OVL

Accellera Standard OVL V2 LRM, 2.8.1 27
March 2014

For example:

shell prompt> ls -l $STD_OVL_DIR
std_ovl/assert_always.vlib
std_ovl/assert_always_on_edge.vlib
. . .
std_ovl/std_ovl_defines.h
std_ovl/std_ovl_task.h
. . .
std_ovl/psl05:
std_ovl/psl05/assert_always_logic.vlib
std_ovl/psl05/assert_always_on_edge_logic.vlib
. . .
std_ovl/psl05/vunits:
std_ovl/psl05/vunits/assert_always.psl
std_ovl/psl05/vunits/assert_always_on_edge.psl
. . .
std_ovl/sva05:
std_ovl/sva05/assert_always_logic.vlib
std_ovl/sva05/assert_always_on_edge_logic.vlib
. . .
std_ovl/vlog95:
std_ovl/vlog95/assert_always_logic.v
std_ovl/vlog95/assert_always_on_edge_logic.v
. . .

Use Model
An Accellera Standard OVL Verilog library user specifies preferred control settings with
standard global variables defined in the following:

• A Verilog file loaded in before the libraries.

• Specifies settings using the standard +define options in Verilog verification engines (via
a setup file or at the command line).

Setting the Verilog Implementation Language
The Accellera Standard OVL is implemented in the following Verilog HDL languages: Verilog
1995(IEEE 1364), SVA 2005 (IEEE 1800) and PSL 2005 (IEEE 1850). The following Verilog
macros select the implementation language:

In the case a user of the library does not specify a language, by default the library is
automatically set to OVL_VERILOG.

OVL_VERILOG (default) Creates assertion checkers defined in Verilog-95.

OVL_SVA Creates assertion checkers defined in System Verilog.

OVL_PSL Creates assertion checkers defined in PSL (Verilog flavor).

Accellera Standard OVL V2 LRM, 2.8.128

OVL Basics
Verilog OVL

March 2014

Note
Only one library can be selected. If the user specifies both OVL_VERILOG and
OVL_SVA (or OVL_PSL), the OVL_VERILOG is undefined in the header file. Editing
the header file to disable this behavior will result in compile errors.

Instantiation in an SVA Interface Construct

If an OVL checker is instantiated in a System Verilog interface construct, the user should define
the following global variable:

Limitations for Verilog-flavor PSL

The PSL implementation does not support modifying the severity_level and msg parameters.
These parameters are ignored and the default values are used:

Generating Synthesizable Logic
The following global variable removes initialization logic from OVL assertions:

Setting OVL_SYNTHESIS removes the unsynthesizable logic from Verilog-95 checkers,
making them synthesizable.

Enabling Assertion and Coverage Logic
The Accellera Standard OVL consists of two types of logic: assertion logic and coverage logic.
These capabilities are controlled via the following standard global variables:

If both of these variables are undefined, the assertion checkers are not activated. The
instantiations of these checkers will have no influence on the verification performed.

OVL_SVA_INTERFACE Ensures OVL assertion checkers can be instantiated in a System
Verilog interface construct. Default: not defined.

severity_level OVL_ERROR

msg “VIOLATION”

OVL_SYNTHESIS Removes initialization logic from the OVL assertion logic.
Default: logic inside the else branch of ifdef OVL_SYNTHESIS
blocks is enabled.

OVL_ASSERT_ON Activates assertion logic. Default: not defined.

OVL_COVER_ON Activates coverage logic. Default: not defined.

OVL Basics
Verilog OVL

Accellera Standard OVL V2 LRM, 2.8.1 29
March 2014

By default, coverage logic (activated with OVL_COVER_ON) monitors cover points and cover
groups. To exclude logic that monitors cover groups define the following standard global
variable:

Asserting, Assuming and Ignoring Properties

The OVL checkers’ assertion logic—if activated (by the OVL_ASSERT_ON global
variable)—identifies a design’s legal properties. Each particular checker instance can verify one
or more assertion checks (depending on the checker type and the checker’s configuration).
Whether a checker’s properties are asserts (i.e., checks) or assumes (i.e., constraints) is
controlled by the checker’s property_type parameter. In addition, property_type can turn on and
off X/Z checks.

A single assertion checker cannot have some checks asserts and other checks assumes.
However, you often can implement this behavior by specifying two checkers.

Monitoring Coverage

The OVL_COVER_ON define activates coverage logic in the checkers. This is a global switch
that turns coverage monitoring on.

Setting Checker Parameter Defaults
All common parameters for checkers and some parameters common to specific checker types
have default parameter values. These are the parameter values assumed by the checker when the
parameter is not specified. The std_ovl_defines.h sets the values of these defaults (i.e., to
default default values), but the default values can be overridden by redefining them. The
following Verilog defines set the values of these default parameter values for the common
checker parameters:

OVL_COVERGROUP_OFF Excludes cover group logic from the coverage logic if
OVL_COVER_ON is defined. Default: not defined.

OVL_SEVERITY_DEFAULT Value of severity_level to use when it is not specified. The value
defined in std_ovl_defines.h is OVL_ERROR.

OVL_PROPERTY_DEFAULT Value of property_type to use when it is not specified. The value
defined in std_ovl_defines.h is OVL_ASSERT.

OVL_MSG_DEFAULT Value of msg to use when it is not specified. The value defined in
std_ovl_defines.h is “VIOLATION”.

OVL_COVER_DEFAULT Value of coverage_level to use when it is not specified. The
value defined in std_ovl_defines.h is OVL_COVER_BASIC.

OVL_CLOCK_EDGE_DEFAULT Value of clock_edge to use when it is not specified. The value
defined in std_ovl_defines.h is OVL_POSEDGE.

Accellera Standard OVL V2 LRM, 2.8.130

OVL Basics
Verilog OVL

March 2014

Disabling Clock/Reset Gating
By default, if a checker’s gating_type parameter is OVL_GATE_CLOCK, the checker’s
internal clock logic is gated by the checker’s enable input. Similarly, by default, if a checker’s
gating_type parameter is OVL_GATE_RESET, the checker’s internal reset logic is gated by the
checker enable input. Setting the following define, overrides this behavior:

Using a Global Reset
The reset port assignments of all assertion checkers can be overridden and controlled by the
following global variable:

Checking X and Z Values
By default, OVL assertion checker logic includes logic implementing assertion checks for X
and Z bits in the values of checker ports when they are sampled. To exclude part or all of this
X/Z checking logic, specify one of the following global variables:

Reporting Assertion Information
By default, (if the assertion logic is active) every assertion violation is reported and (if the
coverage logic is active) every captured coverage point is reported. The user can limit this
reporting and can also initiate special reporting at the start and end of simulation.

OVL_RESET_POLARITY_
DEFAULT

Value of reset_polarity to use when it is not specified. The value
defined in std_ovl_defines.h is OVL_ACTIVE_LOW.

OVL_GATING_TYPE_
DEFAULT

Value of gating_type to use when it is not specified. The value
defined in std_ovl_defines.h is OVL_GATE_CLOCK.

OVL_GATING_OFF Turns off clock/reset gating, effectively setting all gating_type
parameters to OVL_GATE_NONE, so checkers ignore their
enable inputs. Default: gating type specified by each checker’s
gating_type parameter.

OVL_GLOBAL_RESET=
reset_signal

Overrides the reset port assignments of all assertion checkers
with the specified global reset_signal. Checkers ignore their
reset_polarity parameters and treat the global reset as an active-
low reset. Default: each checker’s reset is specified by the reset
port and reset_polarity parameters.

OVL_IMPLICIT_XCHECK_
OFF

Turns off implicit X/Z checks.

OVL_XCHECK_OFF Turns off all X/Z checks (implicit and explicit).

OVL Basics
Verilog OVL

Accellera Standard OVL V2 LRM, 2.8.1 31
March 2014

Limiting a Checker’s Reporting

Limits on the number of times assertion violations and captured coverage points are reported
are controlled by the following global variables:

These maximum limits are for the number of times a checker instance issues a message. If a
checker issues multiple violation messages in a cycle, each message is counted as a single error
report. Similarly, if a checker issues multiple coverage messages in a cycle, each message is
counted as a single cover report.

Reporting Initialization Messages

The checkers’ configuration information is reported at initialization time if the following global
variable is defined:

For each assertion checker instance, the following message is reported:

OVL_NOTE: V2.8: instance_name initialized @ hierarchy Severity:
severity_level, Message: msg

End-of-simulation Signal to ovl_quiescent_state Checkers

The ovl_quiescent_state assertion checker checks that the value of a state expression equals a
check value when a sample event occurs. These checkers also can perform this check at the end
of simulation by setting the following global variable:

OVL_MAX_REPORT_ERROR Discontinues reporting a checker’s assertion violations if the
number of times the checker has reported one or more violations
reaches this limit. Default: unlimited reporting.

OVL_MAX_REPORT_COVER_
POINT

Discontinues reporting a checker’s cover points if the number of
times the checker has reported one or more cover points reaches
this limit.Default: unlimited reporting.

OVL_INIT_MSG Reports configuration information for each checker when it is
instantiated at the start of simulation. Default: no initialization
messages reported.

OVL_END_OF_SIMULATION
=eos_signal

Performs quiescent state checking at end of simulation when the
eos_signal asserts. Default: not defined.

Accellera Standard OVL V2 LRM, 2.8.132

OVL Basics
Verilog OVL

March 2014

Fatal Error Processing
When a checker reports a runtime fatal error (severity_level is OVL_FATAL), simulation
typically continues for a certain amount of time and then the simulation ends. However, the
OVL logic can be configured so that runtime fatal errors do not end simulation. These behaviors
are controlled by the following global variables:

Header Files

std_ovl_defines.h

// Accellera Standard V2.8 Open Verification Library (OVL).
// Accellera Copyright (c) 2005-2012. All rights reserved.

`ifdef OVL_STD_DEFINES_H
// do nothing
`else
`define OVL_STD_DEFINES_H
`define OVL_VERSION “V2.8”

`ifdef OVL_ASSERT_ON
 `ifdef OVL_PSL
 `ifdef OVL_VERILOG
 `undef OVL_PSL
 `endif
 `ifdef OVL_SVA
 `ifdef OVL_PSL
 `undef OVL_PSL
 `endif
 `endif
 `else
 `ifdef OVL_VERILOG
 `else
 `define OVL_VERILOG
 `endif
 `ifdef OVL_SVA
 `undef OVL_VERILOG
 `endif
 `endif
`endif

OVL_RUNTIME_AFTER_
FATAL=time

Number of time units from a fatal error to end of simulation.
Default: 100.

OVL_FINISH_OFF Fatal errors do not stop simulation. Default: fatal error ends
simulation after OVL_RUNTIME_AFTER_FATAL time units.

OVL Basics
Verilog OVL

Accellera Standard OVL V2 LRM, 2.8.1 33
March 2014

`ifdef OVL_COVER_ON
 `ifdef OVL_PSL
 `ifdef OVL_VERILOG
 `undef OVL_PSL
 `endif
 `ifdef OVL_SVA
 `ifdef OVL_PSL
 `undef OVL_PSL
 `endif
 `endif
 `else
 `ifdef OVL_VERILOG
 `else
 `define OVL_VERILOG
 `endif
 `ifdef OVL_SVA
 `undef OVL_VERILOG
 `endif
 `endif
`endif

`ifdef OVL_ASSERT_ON
 `ifdef OVL_SHARED_CODE
 `else
 `define OVL_SHARED_CODE
 `endif
`else
 `ifdef OVL_COVER_ON
 `ifdef OVL_SHARED_CODE
 `else
 `define OVL_SHARED_CODE
 `endif
 `endif
`endif

// specifying interface for System Verilog
`ifdef OVL_SVA_INTERFACE
 `define module interface
 `define endmodule endinterface
`else
 `define module module
 `define endmodule endmodule
`endif

// Selecting global reset or local reset for the checker reset signal
`ifdef OVL_GLOBAL_RESET
 `define OVL_RESET_SIGNAL `OVL_GLOBAL_RESET
`else
 `define OVL_RESET_SIGNAL reset_n
`endif

// active edges
`define OVL_NOEDGE 0
`define OVL_POSEDGE 1
`define OVL_NEGEDGE 2
`define OVL_ANYEDGE 3

Accellera Standard OVL V2 LRM, 2.8.134

OVL Basics
Verilog OVL

March 2014

// default edge_type (ovl_always_on_edge)
`ifdef OVL_EDGE_TYPE_DEFAULT
 // do nothing
`else
 `define OVL_EDGE_TYPE_DEFAULT `OVL_NOEDGE
`endif

// severity levels
`define OVL_FATAL 0
`define OVL_ERROR 1
`define OVL_WARNING 2
`define OVL_INFO 3

// default severity level
`ifdef OVL_SEVERITY_DEFAULT
 // do nothing
`else
 `define OVL_SEVERITY_DEFAULT `OVL_ERROR
`endif

// coverage levels (note that 3 would set both SANITY & BASIC)
`define OVL_COVER_NONE 0
`define OVL_COVER_SANITY 1
`define OVL_COVER_BASIC 2
`define OVL_COVER_CORNER 4
`define OVL_COVER_STATISTIC 8
`define OVL_COVER_ALL 15

// default coverage level
`ifdef OVL_COVER_DEFAULT
 // do nothing
`else
 `define OVL_COVER_DEFAULT `OVL_COVER_BASIC
`endif

// property type
`define OVL_ASSERT 0
`define OVL_ASSUME 1
`define OVL_IGNORE 2
`define OVL_ASSERT_2STATE 3
`define OVL_ASSUME_2STATE 4

// fire bit positions (first two also used for xcheck input to error_t)
`define OVL_FIRE_2STATE 0
`define OVL_FIRE_XCHECK 1
`define OVL_FIRE_COVER 2

// default property type
`ifdef OVL_PROPERTY_DEFAULT
 // do nothing
`else
 `define OVL_PROPERTY_DEFAULT `OVL_ASSERT
`endif

OVL Basics
Verilog OVL

Accellera Standard OVL V2 LRM, 2.8.1 35
March 2014

// default message
`ifdef OVL_MSG_DEFAULT
 // do nothing
`else
 `define OVL_MSG_DEFAULT “VIOLATION”
`endif

// necessary condition
`define OVL_TRIGGER_ON_MOST_PIPE 0
`define OVL_TRIGGER_ON_FIRST_PIPE 1
`define OVL_TRIGGER_ON_FIRST_NOPIPE 2

// default necessary_condition (ovl_cycle_sequence)
`ifdef OVL_NECESSARY_CONDITION_DEFAULT
 // do nothing
`else
 `define OVL_NECESSARY_CONDITION_DEFAULT `OVL_TRIGGER_ON_MOST_PIPE
`endif

// action on new start
`define OVL_IGNORE_NEW_START 0
`define OVL_RESET_ON_NEW_START 1
`define OVL_ERROR_ON_NEW_START 2

// default action_on_new_start (e.g. ovl_change)
`ifdef OVL_ACTION_ON_NEW_START_DEFAULT
 // do nothing
`else
 `define OVL_ACTION_ON_NEW_START_DEFAULT `OVL_IGNORE_NEW_START
`endif

// inactive levels
`define OVL_ALL_ZEROS 0
`define OVL_ALL_ONES 1
`define OVL_ONE_COLD 2

// default inactive (ovl_one_cold)
`ifdef OVL_INACTIVE_DEFAULT
 // do nothing
`else
 `define OVL_INACTIVE_DEFAULT `OVL_ONE_COLD
`endif

// ovl 2.4 new interface
`define OVL_ACTIVE_LOW 0
`define OVL_ACTIVE_HIGH 1

`define OVL_GATE_NONE 0
`define OVL_GATE_CLOCK 1
`define OVL_GATE_RESET 2

`define OVL_FIRE_WIDTH 3

`ifdef OVL_CLOCK_EDGE_DEFAULT
 // do nothing
`else
 `define OVL_CLOCK_EDGE_DEFAULT `OVL_POSEDGE
`endif

Accellera Standard OVL V2 LRM, 2.8.136

OVL Basics
Verilog OVL

March 2014

`ifdef OVL_RESET_POLARITY_DEFAULT
 // do nothing
`else
`define OVL_RESET_POLARITY_DEFAULT `OVL_ACTIVE_LOW
`endif

`ifdef OVL_GATING_TYPE_DEFAULT
 // do nothing
`else
`define OVL_GATING_TYPE_DEFAULT `OVL_GATE_CLOCK
`endif

// ovl runtime after fatal error
`define OVL_RUNTIME_AFTER_FATAL 100

// Covergroup define
`ifdef OVL_COVER_ON
 `ifdef OVL_COVERGROUP_OFF
 `else
 `define OVL_COVERGROUP_ON
 `endif // OVL_COVERGROUP_OFF
`endif // OVL_COVER_ON

// Ensure x-checking logic disabled if ASSERTs are off
`ifdef OVL_ASSERT_ON
`else
 `define OVL_XCHECK_OFF
 `define OVL_IMPLICIT_XCHECK_OFF
`endif

`endif // OVL_STD_DEFINES_H

std_ovl_init.h

// Accellera Standard V2.8 Open Verification Library (OVL).
// Accellera Copyright (c) 2005-2012. All rights reserved.
`ifdef OVL_SHARED_CODE
 `ifdef OVL_SYNTHESIS
 `else
 `ifdef OVL_INIT_MSG
 initial
 ovl_init_msg_t; // Call the User Defined Init Message Routine
 `endif // OVL_INIT_MSG
 `endif // OVL_SYNTHESIS
`endif // OVL_SHARED_CODE

OVL Basics
Verilog OVL

Accellera Standard OVL V2 LRM, 2.8.1 37
March 2014

std_ovl_clock.h

// Accellera Standard V2.8 Open Verification Library (OVL).
// Accellera Copyright (c) 2005-2012. All rights reserved.
wire clk;
`ifdef OVL_SHARED_CODE
 wire gclk;
 `ifdef OVL_GATING_OFF
 assign gclk = clock; // Globally disabled gating
 `else
 // LATCH based gated clock
 reg clken;
 always @ (clock or enable) begin
 if (clock == 1’b0)
 clken <= enable;
 end
 assign gclk = (gating_type == `OVL_GATE_CLOCK) ? clock & clken
 : clock; // Locally disabled gating
 `endif // OVL_GATING_OFF
 // clk (programmable edge & optional gating)
 assign clk = (clock_edge == `OVL_POSEDGE) ? gclk : ~gclk;
`else
 assign clk = clock;
`endif // OVL_SHARED_CODE

std_ovl_reset.h

// Accellera Standard V2.8 Open Verification Library (OVL).
// Accellera Copyright (c) 2005-2012. All rights reserved.
wire reset_n;
`ifdef OVL_SHARED_CODE
 wire greset;
 `ifdef OVL_GATING_OFF
 assign greset = reset; // Globally disabled gating
 `else
 assign greset = (gating_type == `OVL_GATE_RESET) ? reset & enable
 : reset; // Locally disabled gating
 `endif // OVL_GATING_OFF
 // reset_n (programmable polarity & optional gating)
 assign reset_n = (reset_polarity == `OVL_ACTIVE_LOW) ? greset : ~greset;
`else
 assign reset_n = reset;
`endif // OVL_SHARED_CODE

Accellera Standard OVL V2 LRM, 2.8.138

OVL Basics
Verilog OVL

March 2014

std_ovl_count.h

// Accellera Standard V2.8 Open Verification Library (OVL).
// Accellera Copyright (c) 2005-2012. All rights reserved.

// Support for printing of count of OVL assertions
`ifdef OVL_INIT_MSG
`ifdef OVL_INIT_COUNT
 integer ovl_init_count;
 initial begin
 // Reset, prior to counting
 ovl_init_count = 0;
 // Display total number of OVL instances, just after initialization
 $monitor(“\nOVL_METRICS: %d OVL assertions initialized\n”\

,ovl_init_count);
 end
`endif
`endif

std_ovl_cover.h

// Accellera Standard V2.8 Open Verification Library (OVL).
// Accellera Copyright (c) 2005-2012. All rights reserved.

// Parameters that should not be edited

 parameter OVL_COVER_SANITY_ON = (coverage_level & `OVL_COVER_SANITY);
 parameter OVL_COVER_BASIC_ON = (coverage_level & `OVL_COVER_BASIC);
 parameter OVL_COVER_CORNER_ON = (coverage_level & `OVL_COVER_CORNER);
 parameter OVL_COVER_STATISTIC_ON =

(coverage_level & `OVL_COVER_STATISTIC);

std_ovl_task.h

// Accellera Standard V2.8 Open Verification Library (OVL).
// Accellera Copyright (c) 2005-2012. All rights reserved.

‘ifdef OVL_SYNTHESIS
‘else
 integer error_count;
 integer cover_count;
 initial error_count = 0;
 initial cover_count = 0;
‘endif // OVL_SYNTHESIS

OVL Basics
Verilog OVL

Accellera Standard OVL V2 LRM, 2.8.1 39
March 2014

 task ovl_error_t;
 input xcheck;
 input [8*128-1:0] err_msg;
 reg [8*16-1:0] err_typ;
 begin
 ‘ifdef OVL_SYNTHESIS
 ‘else
 case (severity_level)
 ‘OVL_FATAL : err_typ = "OVL_FATAL";
 ‘OVL_ERROR : err_typ = "OVL_ERROR";
 ‘OVL_WARNING : err_typ = "OVL_WARNING";
 ‘OVL_INFO : err_typ = "OVL_INFO";
 default :
 begin
 err_typ = "OVL_ERROR";
 $display("OVL_ERROR: Illegal option used in parameter

severity_level, setting message type to OVL_ERROR : time %0t :
%m", $time);

 end
 endcase

 ‘ifdef OVL_MAX_REPORT_ERROR
 if (error_count < ‘OVL_MAX_REPORT_ERROR)
 ‘endif
 case (property_type)
 ‘OVL_ASSERT,
 ‘OVL_ASSUME : begin
 $display("%s : %s : %s : %0s : severity %0d : time %0t : %m",

err_typ, assert_name, msg, err_msg, severity_level, $time);
 end
 ‘OVL_ASSERT_2STATE,
 ‘OVL_ASSUME_2STATE : begin
 if (xcheck == ‘OVL_FIRE_2STATE) begin
 $display("%s : %s : %s : %0s : severity %0d : time %0t : %m",

err_typ, assert_name, msg, err_msg, severity_level, $time);
 end
 end
 ‘OVL_IGNORE : begin end
 default : begin end
 endcase

 ‘ifdef OVL_FINISH_OFF
 ‘else
 if (severity_level == ‘OVL_FATAL) begin
 case (property_type)
 ‘OVL_ASSERT,
 ‘OVL_ASSUME : begin ovl_finish_t; end
 ‘OVL_ASSERT_2STATE,
 ‘OVL_ASSUME_2STATE : begin
 if (xcheck == ‘OVL_FIRE_2STATE) begin; ovl_finish_t; end end
 ‘OVL_IGNORE : begin end
 default : begin end
 endcase
 end
 ‘endif // OVL_FINISH_OFF
 ‘endif // OVL_SYNTHESIS
 end
 endtask // ovl_error_t

Accellera Standard OVL V2 LRM, 2.8.140

OVL Basics
Verilog OVL

March 2014

task ovl_finish_t;
 begin
 ‘ifdef OVL_SYNTHESIS
 ‘else
 #‘OVL_RUNTIME_AFTER_FATAL $finish;
 ‘endif // OVL_SYNTHESIS
 end
 endtask // ovl_finish_t

 task ovl_init_msg_t;
 begin
 ‘ifdef OVL_SYNTHESIS
 ‘else
 case (property_type)
 ‘OVL_ASSERT,
 ‘OVL_ASSUME,
 ‘OVL_ASSERT_2STATE,
 ‘OVL_ASSUME_2STATE : begin
 ‘ifdef OVL_SYNTHESIS
 ‘else
 ‘ifdef OVL_INIT_COUNT
 #0.1 ‘OVL_INIT_COUNT = ‘OVL_INIT_COUNT + 1;
 ‘else
 $display("OVL_NOTE: %s: %s initialized @ %m Severity: %0d,

Message: %s", ‘OVL_VERSION, assert_name,
severity_level, msg);

 ‘endif
 ‘endif // OVL_SYNTHESIS
 end
 ‘OVL_IGNORE : begin
 // do nothing
 end
 default : $display("OVL_ERROR: Illegal option used in parameter

property_type : %m");
 endcase
 ‘endif // OVL_SYNTHESIS
 end
 endtask // ovl_init_msg_t

OVL Basics
Verilog OVL

Accellera Standard OVL V2 LRM, 2.8.1 41
March 2014

 task ovl_cover_t;
 input [8*64-1:0] cvr_msg;
 begin
 ‘ifdef OVL_SYNTHESIS
 ‘else
 cover_count = cover_count + 1;
 ‘ifdef OVL_MAX_REPORT_COVER_POINT
 if (cover_count <= ‘OVL_MAX_REPORT_COVER_POINT) begin
 ‘endif
 if (coverage_level > ‘OVL_COVER_ALL)
 $display("OVL_ERROR: Illegal option used in parameter

coverage_level : time %0t : %m", $time);
 else
 $display("OVL_COVER_POINT : %s : %0s : time %0t : %m",

assert_name, cvr_msg, $time);
 ‘ifdef OVL_MAX_REPORT_COVER_POINT
 end
 ‘endif
 ‘endif // OVL_SYNTHESIS
 end
 endtask // ovl_cover_t

‘ifdef OVL_SVA
‘else
 // FUNCTION THAT CALCULATES THE LOG BASE 2 OF A NUMBER
 // ========
 // NOTE: only used in sva05
 function integer log2;
 input integer x;
 integer i;
 integer result;
 begin
 result = 1;
 if (x <= 0) result = -1;
 else
 for (i = 0; (1<<i) <= x; i=i+1) result = i+1;
 log2 = result;
 end
 endfunction
‘endif // OVL_SVA

Accellera Standard OVL V2 LRM, 2.8.142

OVL Basics
Verilog OVL

March 2014

 function ovl_fire_2state_f;
 input property_type;
 integer property_type;
 begin
 case (property_type)
 ‘OVL_ASSERT,
 ‘OVL_ASSUME : ovl_fire_2state_f = 1’b1;
 ‘OVL_ASSERT_2STATE,
 ‘OVL_ASSUME_2STATE : ovl_fire_2state_f = 1’b1;
 ‘OVL_IGNORE : ovl_fire_2state_f = 1’b0;
 default : ovl_fire_2state_f = 1’b0;
 endcase
 end
 endfunction // ovl_fire_2state_f

 function ovl_fire_xcheck_f;
 input property_type;
 integer property_type;
 begin
 ‘ifdef OVL_SYNTHESIS
 // fire_xcheck is not synthesizable
 ovl_fire_xcheck_f = 1’b0;
 ‘else
 case (property_type)
 ‘OVL_ASSERT,
 ‘OVL_ASSUME : ovl_fire_xcheck_f = 1’b1;
 ‘OVL_ASSERT_2STATE,
 ‘OVL_ASSUME_2STATE : ovl_fire_xcheck_f = 1’b0;
 ‘OVL_IGNORE : ovl_fire_xcheck_f = 1’b0;
 default : ovl_fire_xcheck_f = 1’b0;
 endcase
 ‘endif // OVL_SYNTHESIS
 end
 endfunction // ovl_fire_xcheck_f

OVL Basics
VHDL OVL

Accellera Standard OVL V2 LRM, 2.8.1 43
March 2014

VHDL OVL
The OVL library includes VHDL implementations of OVL checkers. The pure-VHDL
implementation of OVL contains only 10 checkers and the VHDL-flavor PSL implementation
contains 33 checkers. The pure-VHDL OVL checkers are the ovl_checker_type versions of the
components (which include the enable and fire ports). VHDL wrappers are provided for the
missing checkers that allow the Verilog checkers to be instantiated from VHDL.

The VHDL OVL components are compatible with the Verilog OVL versions, except the VHDL
components include an additional generic called controls that provides global configuration of
the library. The VHDL implementation has the following additional characteristics:

• VHDL OVL is synthesizable (see “Synthesizing the VHDL OVL Library” on page 53).

• VHDL OVL components support both std_logic and std_ulogic port types.

• VHDL OVL implementation contains constants that are equivalent to (have the same
name and values) the corresponding Verilog macro defines. However some macros are
not present in the VHDL implementation because they are implemented by an
ovl_ctrl_record constant (see “ovl_ctrl_record Record” on page 45) or are not needed.

Library Directory Structure
In the OVL installation, the following files are used for the VHDL implementation.

std_ovl/

ovl_checker_type.vhd Checker entity declarations.

std_ovl.vhd Type/constant declarations package.

std_ovl_procs.vhd Procedures package.

std_ovl_components.vhd std_ovl_components package containing checker
component declarations for the checkers in pure-
VHDL OVL.

std_ovl_vhdl_components.vhd Checker component declarations for all PSL
VHDL-flavor checkers.

std_ovl_u_components.vhd std_ovl_u_components package and std_ulogic
wrapper components.

std_ovl_components_vlog.vhd Alternative std_ovl_components package
containing wrappers to allow Verilog checkers to
be used for checkers that are missing from the
pure-VHDL implementation.

Accellera Standard OVL V2 LRM, 2.8.144

OVL Basics
VHDL OVL

March 2014

Use Model

Compiling the VHDL OVL
All the VHDL files (except std_ovl_u_components.vhd and std_ovl_vhdl_components.vhd)
should be compiled into the logical library name accellera_ovl_vhdl (standardized for
portability) for implementation of the 10 pure-VHDL checkers. The accellera_ovl_vhdl library
can be compiled into a central location that can be shared by designers. The library is
configured using a project-specific ovl_ctrl_record record as shown in “Configuring the
Library” on page 45, so modifying the default configuration values in the std_ovl package is not
necessary. The library must be compiled using the EDA tools’ VHDL-93 option.

The pure-VHDL OVL implementation does not contain all of the OVL checkers. Therefore,
wrapper components are provided that allow Verilog implementations of the missing checkers
to be used in VHDL. These wrapper components are found in the std_ovl_componets_vlog.vhd
file (which also contains a std_ovl_components package). This package name is the same as the
package in the std_ovl_components.vhd file, but it includes component declarations for the

std_ovl_u_components_vlog.vhd Alternative std_ovl_u_components package
containing std_ulogic wrappers to allow Verilog
checkers to be used for checkers that are missing
from the pure-VHDL implementation

std_ovl_clock_gating.vhd Internal clock gating component.

std_ovl_reset_gating.vhd Internal reset gating component.

std_ovl/vhdl93/

ovl_checker_type_rtl.vhd Checker architecture bodies.

std_ovl/vhdl93/syn_src

std_ovl_procs_syn.vhd Synthesizable version of std_ovl_procs.vhd.

ovl_checker_type_rtl.vhd Synthesizable versions of architecture bodies.

std_ovl/vhdl93/legacy/

std_ovl.vhd Component declarations to allow V1
assert_checker Verilog checkers to be used in
VHDL.

std_ovl/psl05/

assert_*_psl_logic.vhd Entity declarations for PSL assertions and
architecture definitions for ovl_checker.vhd

std_ovl/psl05/vunits_vhdl/

assert_*.psl Declarations and definitions of all properties in
PSL files

OVL Basics
VHDL OVL

Accellera Standard OVL V2 LRM, 2.8.1 45
March 2014

missing checkers. The same package name is used in both files, so only one
std_ovl_components file should be compiled into the library.

For the VHDL-flavor PSL implementation of OVL, the VHDL components can be directly used
wherever required. std_ovl_vhdl_components.vhd is an updated file that contains a package
std_ovl_vhdl_components that needs to be compiled. This package has component declarations
of all the checkers for VHDL-flavor PSL and has to be included for the checker
implementation.

The following section shows how to compile the pure-VHDL OVL checkers and the VHDL
OVL with PSL checkers.

Note
std_ovl_vhdl_components is a new package in addition to std_ovl_components. This
needs to be compiled for VHDL-flavor PSL implementation of checkers. If it is not
required to use the PSL checkers, std_ovl_components package is sufficient.

OVL Compile Order for pure-VHDL checkers

The accellera_ovl_vhdl library’s compile order is as follows:

1. std_ovl/std_ovl.vhd

2. std_ovl/std_ovl_components.vhd

3. std_ovl/std_ovl_procs.vhd

4. std_ovl/std_ovl_clock_gating.vhd

5. std_ovl/std_ovl_reset_gating.vhd

6. std_ovl/ovl_name.vhd

7. std_ovl/vhdl93/ovl_*_rtl.vhd

ovl_name.vhd refers to the 10 pure-VHDL OVL checkers (see the list in “OVL Library” on
page 12).

OVL Compile order for VHDL-flavor PSL

The accellera_ovl_vhdl library’s compile order is as follows:

1. std_ovl/std_ovl.vhd

2. std_ovl/std_ovl_procs.vhd

3. std_ovl/std_ovl_clock_gating.vhd

4. std_ovl/std_ovl_reset_gating.vhd

5. std_ovl/ovl_*.vhd

6. std_ovl/std_ovl_vhdl_components.vhd

Accellera Standard OVL V2 LRM, 2.8.146

OVL Basics
VHDL OVL

March 2014

7. std_ovl/psl05/ovl_*_psl_logic.vhd

8. std_ovl/psl05/vunits_vhdl/ovl_*.psl

Compilation of the PSL files might require a tool-specific switch/command. For pure-VHDL
checkers, if std_ulogic-based ports are required, then you must compile the
std_ovl_u_components.vhd file into a separate accellera_ovl_vhdl_u library after the
accellera_ovl_vhdl library files are compiled.

Configuring the Library
VHDL OVL has all the global library configuration features of the Verilog implementation
(which are provided by the Verilog macro defines). For example: globally enabling/disabling
X/Z-checking on all checker instances.

An ovl_ctrl_record constant controls global library configuration. This record is declared in
std_ovl.vhd and is assigned to the controls generic on every checker instance. It should be
defined in a design-specific work library package for use on all checker instances. With this
implementation, the configuration of the checkers is controlled from one place.

In particular, changing constants in the central std_ovl.vhd file is not necessary. In fact, the
VHDL OVL files are read-only and modifying any of them is not recommended. Apart from the
ovl_control_record, each OVL assertion checker has its own set of parameters as described in
its corresponding data sheet (see page 71).

ovl_ctrl_record Record

The ovl_ctrl_record record is divided into three groups:

• Elements that are of the ovl_ctrl type and can be assigned OVL_ON or OVL_OFF
values. These elements mainly control the generate statements used in the checkers.

• User-configurable values that control the message printing and how long the simulation
should continue after a fatal assertion occurs.

• Default values of the generics that are common to all checkers.

Table 2-3 shows the ovl_ctrl_record record elements and how they map to the Verilog macro
values that configure the Verilog implementation of the OVL.

Table 2-3. ovl_ctrl_record Elements

ovl_ctrl_record Description Verilog Macro VHDL Value

xcheck_ctrl Enables/disables all X/Z
checking code.

OVL_XCHECK_OFF OVL_OFF

implicit_xcheck_ctrl Enables/disables implicit
X/Z checks.

OVL_IMPLICIT_
XCHECK_OFF

OVL_OFF

OVL Basics
VHDL OVL

Accellera Standard OVL V2 LRM, 2.8.1 47
March 2014

init_msg_ctrl Enables/disables code that
prints checker initialization
messages or a count of the
number of checkers
initialized.

OVL_INIT_MSG OVL_OFF

init_count_ctrl Enables/disables counting of
number of checkers
initialized when
init_msg_ctrl is set to
OVL_ON.

OVL_INIT_COUNT OVL_OFF

assert_ctrl Enables/disables all 2-state
and X/Z check assertions.

OVL_ASSERT_ON OVL_ON

cover_ctrl Enables/disables converge
code.

OVL_COVER_ON OVL_ON

global_reset_ctrl Enables/disables the use of a
global reset signal.

OVL_GLOBAL_RESET OVL_ON

finish_ctrl Enables/disables halting of
simulation when a fatal
assertion is detected.

OVL_FINISH_OFF OVL_OFF

gating_ctrl Enables/disables clock or
reset gating.

OVL_GATING_OFF OVL_OFF

max_report_error Maximum number of
assertion error messages that
a checker should report.

OVL_MAX_REPORT_
ERROR

15

max_report_cover_
point

Maximum number of
coverage messages that a
checker should report.

OVL_REPORT_
COVER_POINT

15

runtime_after_fatal Time after a fatal assertion is
detected that the simulation
should be halted.

OVL_RUNIME_
AFTER_FATAL

100 ns

severity_level_
default

severity_level generic
default value.

OVL_SEVERITY_
DEFAULT

OVL_ERROR

property_type_
default

property_type generic
default value.

OVL_PROPERTY_
DEFAULT

OVL_ASSERT

msg_default msg generic default value. OVL_MSG_DEFAULT “VIOLATION”

coverage_level_
default

coverage_level generic
default value.

OVL_COVER_
DEFAULT

OVL_COVER_
BASIC

Table 2-3. ovl_ctrl_record Elements (cont.)

ovl_ctrl_record Description Verilog Macro VHDL Value

Accellera Standard OVL V2 LRM, 2.8.148

OVL Basics
VHDL OVL

March 2014

The following example shows how to declare and use an ovl_ctrl_record record constant:

library accellera_ovl_vhdl;
use accellera_ovl_vhdl.std_ovl.all;

package proj_pkg is
 -- OVL configuration
 constant ovl_proj_controls : ovl_ctrl_record := (
 -- generate statement controls
 xcheck_ctrl => OVL_ON,
 implicit_xcheck_ctrl => OVL_ON,
 init_msg_ctrl => OVL_ON,
 init_count_ctrl => OVL_OFF,
 assert_ctrl => OVL_ON,
 cover_ctrl => OVL_ON,
 global_reset_ctrl => OVL_OFF,
 finish_ctrl => OVL_ON,
 gating_ctrl => OVL_ON,

 -- user configurable library constants
 max_report_error => 4,
 max_report_cover_point => 15,
 runtime_after_fatal => “150 ns “,

 -- default values for common generics
 severity_level_default => OVL_SEVERITY_DEFAULT,
 property_type_default => OVL_PROPERTY_DEFAULT,
 --msg_default => OVL_MSG_DEFAULT,
 msg_default => ovl_set_msg(“YOUR DEFAULT MESSAGE”),
 coverage_level_default => OVL_COVER_DEFAULT,
 clock_edge_default => OVL_CLOCK_EDGE_DEFAULT,
 reset_polarity_default => OVL_RESET_POLARITY_DEFAULT,
 gating_type_default => OVL_GATING_TYPE_DEFAULT
);
end package proj_pkg;

library accellera_ovl_vhdl;
use accellera_ovl_vhdl.std_ovl.all;
use accellera_ovl_vhdl.std_ovl_components.all; -- optional - not needed if
 -- using direct instantiation
use work.proj_pkg.all;

clock_edge_default clock_edge generic default
value.

OVL_CLOCK_
EDGE_DEFAULT

OVL_POSEDGE

reset_polarity_
default

reset_polarity generic
default value.

OVL_RESET_
POLARITY_DEFAULT

OVL_ACTIVE_
LOW

gating_type_default gating_type generic default
value.

OVL_GATING_
TYPE_DEFAULT

OVL_GATE_
CLOCK

Table 2-3. ovl_ctrl_record Elements (cont.)

ovl_ctrl_record Description Verilog Macro VHDL Value

OVL Basics
VHDL OVL

Accellera Standard OVL V2 LRM, 2.8.1 49
March 2014

architecture rtl of design is
begin

---rtl code---
 ovl_gen : if (ovl_proj_controls.assert_ctrl = OVL_ON) generate

----user ovl signal conditioning code---

 ovl_u1 : ovl_next
 generic map (
 msg => “Check 1”,
 num_cks => 1,
 check_overlapping => OVL_CHK_OVERLAP_OFF,
 check_missing_start => OVL_OFF,
 coverage_level => OVL_COVER_CORNER,
 controls => ovl_proj_controls
)
 port map (
 clock => clk,
 reset => reset_n,
 enable => enable_1,
 start_event , => start_event_1
 test_expr => test_1,
 fire => fire_1
);

 ovl_u2 : ovl_next
 generic map (
 msg => “Check 2”,
 num_cks => 2,
 check_overlapping => OVL_CHK_OVERLAP_ON,
 check_missing_start => OVL_ON,
 coverage_level => OVL_COVER_ALL,
 severity_level => OVL_FATAL,
 controls => ovl_proj_controls
)
 port map (
 clock => clk,
 reset => reset_n,
 enable => enable_2,
 start_event => start_event_2,
 test_expr => test_2,
 fire => fire_2
);
 end generate ovl_gen;
end architecture rtl;

The ovl_ctrl_record is typically configured for various projects. For
example, to enable assertion checks but no coverage, set assert_ctrl to
OVL_ON and cover_ctrl to OVL_OFF where OVL_ON and OVL_OFF are of subtype
ovl_ctrl declared in std_ovl.vhd.

Accellera Standard OVL V2 LRM, 2.8.150

OVL Basics
VHDL OVL

March 2014

Checker example with PSL-VHDL flavor
The following example shows the implementation of a PSL-VHDL checker ovl_even_parity.

library ieee;
use ieee.std_logic_1164.all;
use work.std_ovl.all;
use work.std_ovl_vhdl_components.all;

entity test is
port(test_expr : in std_logic_vector(3 downto 0));

end test;

architecture test_architecture of test is

signal clk: std_logic := ’0’;
signal reset_n : std_logic := ’0’;
signal temp : std_logic_vector (3 downto 0);
signal en: std_logic := ’1’;

constant controls_param : ovl_ctrl_record :=
 (-- generate statement controls
 xcheck_ctrl => OVL_ON,
 implicit_xcheck_ctrl => OVL_ON,
 init_msg_ctrl => OVL_OFF,
 init_count_ctrl => OVL_OFF,
 assert_ctr => OVL_ON,
 cover_ctr => OVL_ON,
 global_reset_ctrl => OVL_OFF,
 finish_ctrl => OVL_ON,
 gating_ctrl => OVL_ON,

 -- user configurable library constants
 max_report_error => 15,
 max_report_cover_point => 15,
 runtime_after_fatal => "200 ns ",

 -- default values for common generics
 severity_level_default => OVL_SEVERITY_DEFAULT,
 property_type_default => OVL_PROPERTY_DEFAULT,
 msg_default => OVL_MSG_DEFAULT,
 coverage_level_default => OVL_COVER_DEFAULT,
 clock_edge_default => OVL_CLOCK_EDGE_DEFAULT,
 reset_polarity_default => OVL_RESET_POLARITY_DEFAULT,
 gating_type_default => OVL_GATING_TYPE_DEFAULT
);

begin

process
 begin

wait for 5 ns;
clk <= not clk;

end process;

OVL Basics
VHDL OVL

Accellera Standard OVL V2 LRM, 2.8.1 51
March 2014

process
begin

wait for 25 ns;
reset_n <= ’1’;

end process;

temp<= test_expr xor "0101"; --sample operation

one_ep1: ovl_even_parity
generic map(

property_type => OVL_ASSERT,
width => 4,
controls => controls_param)

port map(
clock => clk,
reset =>reset_n,
enable =>en,
test_expr =>temp);

end architecture test_architecture;

This example shows you must include work.std_ovl_vhdl_components.all, which has a package
of declarations for all components. More than one checker can be included if needed.

Note
Each checker requires its corresponding PSL code and architecture. So, include *.psl and
*_psl_logic.vhd files when compiling and simulating each checker. In addition,
compilers typically have a tool-specific switch for PSL files.

std_ulogic Wrappers
The std_ovl_u_components.vhd file contains the std_ovl_u_components package and
ovl_checker_type components that have std_ulogic/std_ulogic_vector ports. These components
are wrappers for the ovl_checker components in the accellera_ovl_vhdl library. As these
std_ulogic wrappers have the same entity names as the checkers in the accellera_ovl_vhdl
library, the std_ovl_u_components.vhd file should be compiled into the accellera_ovl_vhdl_u
library.To use these components, add the following declarations to the instantiating code:

library accellera_ovl_vhdl;
use accellera_ovl_vhdl.std_ovl.all;
library accellera_ovl_vhdl_u;
-- optional - not needed if using direct instantiation
use accellera_ovl_vhdl_u.std_ovl_u_components.all;

Accellera Standard OVL V2 LRM, 2.8.152

OVL Basics
VHDL OVL

March 2014

Number of Checkers in a Simulation
To print the number of OVL checkers initialized in a simulation set init_msg_ctrl and
init_count_ctrl items to OVL_ON and include the following code:

library accellera_ovl_vhdl;
use accellera_ovl_vhdl.std_ovl.all;
use accellera_ovl_vhdl.std_ovl_procs.all;
use work.proj_pkg.all;
entity tb is
end entity tb;

architecture tb of tb is
...
begin
...
 ovl_print_init_count_p : process
 begin
 wait for 0 ns;
 ovl_print_init_count_proc(ovl_proj_controls);
 wait; -- forever
 end process ovl_print_init_count_p;
end architecture tb;

“2-state” and “X/Z-check” Assertions in VHDL
The OVL checker components contain separate sections of code that implement the “2-state”
and “X/Z-check” assertion checks. These terms are derived from the use of the Verilog family
of HDLs. However, the VHDL OVL implementation uses 9-state std_logic values so 2-state
assertion checks and X/Z checks have a slightly different meaning for the VHDL OVL
checkers. Note that the VHDL implementation is fully compatible with the Verilog
implementation.

Verilog OVL checkers’ assertion checks are mapped to VHDL as follows:

• 2-state assertion checks:

• Verilog 0 => VHDL ‘0’/‘L’

• Verilog 1 => VHDL ‘1’/‘H’

• X/Z-checks:

• Verilog X or Z => VHDL ‘X’, ‘Z’, ‘W’, ‘U’ or ‘-’.

OVL Basics
VHDL OVL

Accellera Standard OVL V2 LRM, 2.8.1 53
March 2014

Synthesizing the VHDL OVL Library
All code in the pure- VHDL implementation is synthesizable—apart from the path_name
attribute in the architectures and the std_ovl_procs.vhd file. Until all the synthesis tool vendors
support the use of the path_name attribute, a synthesizable version of the architectures is
provided in the std_ovl/vhdl93/syn_src directory. The order of analysis for the synthesis version
of the library is as follows (ensure that the files are compiled into the accellera_ovl_vhdl
library):

1. std_ovl/std_ovl.vhd

2. std_ovl/std_ovl_components.vhd

3. std_ovl/vhdl93/syn_src/std_ovl_procs_syn.vhd

4. std_ovl/std_ovl_clock_gating.vhd

5. std_ovl/std_ovl_reset_gating.vhd

6. std_ovl/ovl_*.vhd

7. std_ovl/vhdl93/syn_src/ovl_*_rtl.vhd

Primary VHDL Packages

std_ovl.vhd
-- Accellera Standard V2.8 Open Verification Library (OVL).
-- Accellera Copyright (c) 2009 - 2012. All rights reserved.

library ieee;
use ieee.std_logic_1164.all;
package std_ovl is

 -- subtypes for common generics
 subtype ovl_severity_level is integer range -1 to 3;
 subtype ovl_severity_level_natural is ovl_severity_level range 0 to
 ovl_severity_level’high;
 subtype ovl_property_type is integer range -1 to 4;
 subtype ovl_property_type_natural is ovl_property_type range 0 to
 ovl_property_type’high;
 subtype ovl_coverage_level is integer range -1 to 15;
 subtype ovl_coverage_level_natural is ovl_coverage_level range 0 to
 ovl_coverage_level’high;
 subtype ovl_active_edges is integer range -1 to 3;
 subtype ovl_active_edges_natural is ovl_active_edges range 0 to
 ovl_active_edges’high;
 subtype ovl_reset_polarity is integer range -1 to 1;
 subtype ovl_reset_polarity_natural is ovl_reset_polarity range 0 to
 ovl_reset_polarity’high;
 subtype ovl_gating_type is integer range -1 to 2;
 subtype ovl_gating_type_natural is ovl_gating_type range 0 to
 ovl_gating_type’high;

 -- subtypes for checker specific generics

Accellera Standard OVL V2 LRM, 2.8.154

OVL Basics
VHDL OVL

March 2014

 subtype ovl_necessary_condition is integer range 0 to 2;
 subtype ovl_action_on_new_start is integer range 0 to 2;
 subtype ovl_inactive is integer range 0 to 2;
 subtype ovl_positive_2 is integer range 2 to
 integer’high;
 subtype ovl_chk_overlap is integer range 0 to 1;

 -- subtypes for control constants
 subtype ovl_ctrl is integer range 0 to 1;
 subtype ovl_msg_default_type is string(1 to 50);

 -- user modifiable library control items
 type ovl_ctrl_record is record
 -- generate statement controls
 xcheck_ctrl : ovl_ctrl;
 implicit_xcheck_ctrl : ovl_ctrl;
 init_msg_ctrl : ovl_ctrl;
 init_count_ctrl : ovl_ctrl;
 assert_ctrl : ovl_ctrl;
 cover_ctrl : ovl_ctrl;
 global_reset_ctrl : ovl_ctrl;
 finish_ctrl : ovl_ctrl;
 gating_ctrl : ovl_ctrl;

 -- user configurable library constants
 max_report_error : natural;
 max_report_cover_point : natural;
 runtime_after_fatal : string(1 to 10);

 -- default values for common generics
 severity_level_default : ovl_severity_level_natural;
 property_type_default : ovl_property_type_natural;
 msg_default : ovl_msg_default_type;
 coverage_level_default : ovl_coverage_level_natural;
 clock_edge_default : ovl_active_edges_natural;
 reset_polarity_default : ovl_reset_polarity_natural;
 gating_type_default : ovl_gating_type_natural;

 end record ovl_ctrl_record;

 -- global signals
 signal ovl_global_reset_signal : std_logic;
 signal ovl_end_of_simulation_signal : std_logic := ‘0’;

 -- global variable
 shared variable ovl_init_count : natural := 0;

OVL Basics
VHDL OVL

Accellera Standard OVL V2 LRM, 2.8.1 55
March 2014

 -- Hard-coded library constants
 -- NOTE: These constants must not be changed by users. Users can
 -- configure the library using the ovl_ctrl_record. Please see
 -- “ovl_ctrl_record Record” on page 45.

 constant OVL_VERSION : string := “V2.8”;

 -- This constant may be changed in future releases of the library or
 -- by EDA vendors.
 constant OVL_FIRE_WIDTH : natural := 3;

 constant OVL_NOT_SET : integer := -1;

 -- generate statement control constants
 constant OVL_ON : ovl_ctrl := 1;
 constant OVL_OFF : ovl_ctrl := 0;

 -- fire bit selection constants
 constant OVL_FIRE_2STATE : integer := 0;
 constant OVL_FIRE_XCHECK : integer := 1;
 constant OVL_FIRE_COVER : integer := 2;

 -- severity level
 constant OVL_SEVERITY_LEVEL_NOT_SET : ovl_severity_level
 := OVL_NOT_SET;
 constant OVL_FATAL : ovl_severity_level := 0;
 constant OVL_ERROR : ovl_severity_level := 1;
 constant OVL_WARNING : ovl_severity_level := 2;
 constant OVL_INFO : ovl_severity_level := 3;

 -- coverage levels
 constant OVL_COVERAGE_LEVEL_NOT_SET : ovl_coverage_level
 := OVL_NOT_SET;
 constant OVL_COVER_NONE : ovl_coverage_level := 0;
 constant OVL_COVER_SANITY : ovl_coverage_level := 1;
 constant OVL_COVER_BASIC : ovl_coverage_level := 2;
 constant OVL_COVER_CORNER : ovl_coverage_level := 4;
 constant OVL_COVER_STATISTIC : ovl_coverage_level := 8;
 constant OVL_COVER_ALL : ovl_coverage_level := 15;

 -- property type
 constant OVL_PROPERTY_TYPE_NOT_SET : ovl_property_type
 := OVL_NOT_SET;
 constant OVL_ASSERT : ovl_property_type := 0;
 constant OVL_ASSUME : ovl_property_type := 1;
 constant OVL_IGNORE : ovl_property_type := 2;
 constant OVL_ASSERT_2STATE : ovl_property_type := 3;
 constant OVL_ASSUME_2STATE : ovl_property_type := 4;

 -- active edges
 constant OVL_ACTIVE_EDGES_NOT_SET : ovl_active_edges
 := OVL_NOT_SET;
 constant OVL_NOEDGE : ovl_active_edges := 0;
 constant OVL_POSEDGE : ovl_active_edges := 1;
 constant OVL_NEGEDGE : ovl_active_edges := 2;

Accellera Standard OVL V2 LRM, 2.8.156

OVL Basics
VHDL OVL

March 2014

 constant OVL_ANYEDGE : ovl_active_edges := 3;

 -- necessary condition
 constant OVL_TRIGGER_ON_MOST_PIPE : ovl_necessary_condition := 0;
 constant OVL_TRIGGER_ON_FIRST_PIPE : ovl_necessary_condition := 1;
 constant OVL_TRIGGER_ON_FIRST_NOPIPE : ovl_necessary_condition := 2;

 -- action on new start
 constant OVL_IGNORE_NEW_START : ovl_action_on_new_start := 0;
 constant OVL_RESET_ON_NEW_START : ovl_action_on_new_start := 1;
 constant OVL_ERROR_ON_NEW_START : ovl_action_on_new_start := 2;

 -- inactive levels
 constant OVL_ALL_ZEROS : ovl_inactive := 0;
 constant OVL_ALL_ONES : ovl_inactive := 1;
 constant OVL_ONE_COLD : ovl_inactive := 2;

 -- reset polarity
 constant OVL_RESET_POLARITY_NOT_SET : ovl_reset_polarity
 := OVL_NOT_SET;
 constant OVL_ACTIVE_LOW : ovl_reset_polarity := 0;
 constant OVL_ACTIVE_HIGH : ovl_reset_polarity := 1;

 -- gating type
 constant OVL_GATEING_TYPE_NOT_SET : ovl_gating_type
 := OVL_NOT_SET;
 constant OVL_GATE_NONE : ovl_gating_type := 0;
 constant OVL_GATE_CLOCK : ovl_gating_type := 1;
 constant OVL_GATE_RESET : ovl_gating_type := 2;

 -- ovl_next check_overlapping values
 constant OVL_CHK_OVERLAP_OFF : ovl_chk_overlap := 1;
 constant OVL_CHK_OVERLAP_ON : ovl_chk_overlap := 0;

 -- checker xcheck type
 constant OVL_IMPLICIT_XCHECK : boolean := false;
 constant OVL_EXPLICIT_XCHECK : boolean := true;

 -- default values
 constant OVL_SEVERITY_DEFAULT : ovl_severity_level
 := OVL_ERROR;
 constant OVL_PROPERTY_DEFAULT : ovl_property_type
 := OVL_ASSERT;
 constant OVL_MSG_NUL : string(10 to ovl_msg_default_type’high)
 := (others => NUL);
 constant OVL_MSG_DEFAULT : ovl_msg_default_type
 := “VIOLATION” & OVL_MSG_NUL;
 constant OVL_MSG_NOT_SET : string
 := ““;
 constant OVL_COVER_DEFAULT : ovl_coverage_level
 := OVL_COVER_BASIC;
 constant OVL_CLOCK_EDGE_DEFAULT : ovl_active_edges
 := OVL_POSEDGE;
 constant OVL_RESET_POLARITY_DEFAULT : ovl_reset_polarity
 := OVL_ACTIVE_LOW;
 constant OVL_GATING_TYPE_DEFAULT : ovl_gating_type
 := OVL_GATE_CLOCK;

OVL Basics
VHDL OVL

Accellera Standard OVL V2 LRM, 2.8.1 57
March 2014

 constant OVL_CTRL_DEFAULTS : ovl_ctrl_record := (
 -- generate statement controls
 xcheck_ctrl => OVL_ON,
 implicit_xcheck_ctrl => OVL_ON,
 init_msg_ctrl => OVL_OFF,
 init_count_ctrl => OVL_OFF,
 assert_ctrl => OVL_ON,
 cover_ctrl => OVL_OFF,
 global_reset_ctrl => OVL_OFF,
 finish_ctrl => OVL_ON,
 gating_ctrl => OVL_ON,

 -- user configurable library constants
 max_report_error => 15,
 max_report_cover_point => 15,
 runtime_after_fatal => “100 ns “,

 -- default values for common generics
 severity_level_default => OVL_SEVERITY_DEFAULT,
 property_type_default => OVL_PROPERTY_DEFAULT,
 msg_default => OVL_MSG_DEFAULT,
 coverage_level_default => OVL_COVER_DEFAULT,
 clock_edge_default => OVL_CLOCK_EDGE_DEFAULT,
 reset_polarity_default => OVL_RESET_POLARITY_DEFAULT,
 gating_type_default => OVL_GATING_TYPE_DEFAULT

);
end package std_ovl;

std_ovl_procs.vhd
-- Accellera Standard V2.8 Open Verification Library (OVL).
-- Accellera Copyright (c) 2009 - 2012. All rights reserved.

-- NOTE : This file not suitable for use with synthesis tools, use
-- std_ovl_procs_syn.vhd instead.

library ieee;
use ieee.std_logic_1164.all;
use work.std_ovl.all;
use std.textio.all;

package std_ovl_procs is

 -- Users must only use the ovl_set_msg and ovl_print_init_count_proc
 -- subprograms. All other subprograms are for internal use only.

 --
 -- ovl_set_msg
 --
 -- This allows the default message string to be set for a
 -- ovl_ctrl_record.msg_default constant.

 function ovl_set_msg (
 constant default : in string

Accellera Standard OVL V2 LRM, 2.8.158

OVL Basics
VHDL OVL

March 2014

) return string;

 -- ovl_print_init_count_proc
 --
 -- This is used to print a message stating the number of checkers
 -- that have been initialized.

 procedure ovl_print_init_count_proc (
 constant controls : in ovl_ctrl_record
);

 -- ovl_error_proc

 procedure ovl_error_proc (
 constant err_msg : in string;
 constant severity_level : in ovl_severity_level;
 constant property_type : in ovl_property_type;
 constant assert_name : in string;
 constant msg : in string;
 constant path : in string;
 constant controls : in ovl_ctrl_record;
 signal fatal_sig : out std_logic;
 variable error_count : inout natural
);

 -- ovl_init_msg_proc

 procedure ovl_init_msg_proc (
 constant severity_level : in ovl_severity_level;
 constant property_type : in ovl_property_type;
 constant assert_name : in string;
 constant msg : in string;
 constant path : in string;
 constant controls : in ovl_ctrl_record
);

 -- ovl_cover_proc

 procedure ovl_cover_proc (
 constant cvr_msg : in string;
 constant assert_name : in string;
 constant path : in string;
 constant controls : in ovl_ctrl_record;
 variable cover_count : inout natural
);

OVL Basics
VHDL OVL

Accellera Standard OVL V2 LRM, 2.8.1 59
March 2014

 -- ovl_finish_proc

 procedure ovl_finish_proc (
 constant assert_name : in string;
 constant path : in string;
 constant runtime_after_fatal : in string;
 signal fatal_sig : in std_logic
);

 -- ovl_2state_is_on

 function ovl_2state_is_on (
 constant controls : in ovl_ctrl_record;
 constant property_type : in ovl_property_type
) return boolean;

 -- ovl_xcheck_is_on

 function ovl_xcheck_is_on (
 constant controls : in ovl_ctrl_record;
 constant property_type : in ovl_property_type;
 constant explicit_x_check : in boolean
) return boolean;

 -- ovl_get_ctrl_val

 function ovl_get_ctrl_val (
 constant instance_val : in integer;
 constant default_ctrl_val : in natural
) return natural;

 -- ovl_get_ctrl_val

 function ovl_get_ctrl_val (
 constant instance_val : in string;
 constant default_ctrl_val : in string
) return string;

 -- cover_item_set

 function cover_item_set (
 constant level : in ovl_coverage_level;
 constant item : in ovl_coverage_level
) return boolean;

Accellera Standard OVL V2 LRM, 2.8.160

OVL Basics
VHDL OVL

March 2014

 -- ovl_is_x

 function ovl_is_x (
 s : in std_logic
) return boolean;

 -- ovl_is_x

 function ovl_is_x (
 s : in std_logic_vector
) return boolean;

 -- or_reduce

 function or_reduce (
 v : in std_logic_vector
) return std_logic;

 -- and_reduce

 function and_reduce (
 v : in std_logic_vector
) return std_logic;

 -- xor_reduce

 function xor_reduce (
 v : in std_logic_vector
) return std_logic;

 -- “sll”

 function “sll” (
 l : in std_logic_vector;
 r : in integer
) return std_logic_vector;

 -- “srl”

 function “srl” (
 l : in std_logic_vector;
 r : in integer
) return std_logic_vector;

 -- unsigned comparison functions
 -- Note: the width of l must be > 0.

OVL Basics
VHDL OVL

Accellera Standard OVL V2 LRM, 2.8.1 61
March 2014

 -- “>”

 function “>” (
 l : in std_logic_vector;
 r : in natural
) return boolean;

 -- “<“

 function “<“ (
 l : in std_logic_vector;
 r : in natural
) return boolean;

 type err_array is array (ovl_severity_level_natural) of string
 (1 to 16);

 constant err_typ : err_array := (OVL_FATAL => “ OVL_FATAL”,
 OVL_ERROR => “ OVL_ERROR”,
 OVL_WARNING => “ OVL_WARNING”,
 OVL_INFO => “ OVL_INFO”);

end package std_ovl_procs;

package body std_ovl_procs is

 -- Users must only use the ovl_set_msg and ovl_print_init_count_proc
 -- subprograms. All other subprograms are for internal use only.

 -- ovl_set_msg
 --
 -- This allows the default message string to be set for a
 -- ovl_ctrl_record.msg_default constant.

 function ovl_set_msg (
 constant default : in string
) return string is
 variable new_default : ovl_msg_default_type := (others => NUL);
 begin
 new_default(1 to default’high) := default;
 return new_default;
 end function ovl_set_msg;

Accellera Standard OVL V2 LRM, 2.8.162

OVL Basics
VHDL OVL

March 2014

 -- ovl_print_init_count_proc
 --
 -- This is used to print a message stating the number of checkers that
 -- have been initialized.

 procedure ovl_print_init_count_proc (
 constant controls : in ovl_ctrl_record
) is
 variable ln : line;
 begin
 if ((controls.init_msg_ctrl = OVL_ON) and
 (controls.init_count_ctrl = OVL_ON)) then
 writeline(output, ln);
 write(ln, “OVL_METRICS:
 “ & integer’image(ovl_init_count) & “ OVL assertions initialized”);
 writeline(output, ln);
 writeline(output, ln);
 end if;
 end procedure ovl_print_init_count_proc;

 -- ovl_error_proc

 procedure ovl_error_proc (
 constant err_msg : in string;
 constant severity_level : in ovl_severity_level;
 constant property_type : in ovl_property_type;
 constant assert_name : in string;
 constant msg : in string;
 constant path : in string;
 constant controls : in ovl_ctrl_record;
 signal fatal_sig : out std_logic;
 variable error_count : inout natural
) is
 variable ln : line;
 constant severity_level_ctrl : ovl_severity_level_natural :=
 ovl_get_ctrl_val(severity_level, controls.severity_level_default);
 constant property_type_ctrl : ovl_property_type_natural :=
 ovl_get_ctrl_val(property_type, controls.property_type_default);
 constant msg_ctrl : string :=
 ovl_get_ctrl_val(msg, controls.msg_default);
 begin
 error_count := error_count + 1;

 if (error_count <= controls.max_report_error) then
 case (property_type_ctrl) is
 when OVL_ASSERT | OVL_ASSUME | OVL_ASSERT_2STATE
 | OVL_ASSUME_2STATE =>
 write(ln, err_typ(severity_level_ctrl) & “ : “
 & assert_name & “ : “
 & msg_ctrl & “ : “
 & err_msg
 & “ : severity “ &
 ovl_severity_level’image(severity_level_ctrl)
 & “ : time “ & time’image(now)

OVL Basics
VHDL OVL

Accellera Standard OVL V2 LRM, 2.8.1 63
March 2014

 & “ “ & path);
 writeline(output, ln);
 when OVL_IGNORE => null;
 end case;
 end if;

 if ((severity_level_ctrl = OVL_FATAL) and
 (controls.finish_ctrl = OVL_ON)) then
 fatal_sig <= ‘1’;
 end if;
 end procedure ovl_error_proc;

 -- ovl_init_msg_proc

 procedure ovl_init_msg_proc (
 constant severity_level : in ovl_severity_level;
 constant property_type : in ovl_property_type;
 constant assert_name : in string;
 constant msg : in string;
 constant path : in string;
 constant controls : in ovl_ctrl_record
) is
 variable ln : line;
 constant severity_level_ctrl : ovl_severity_level_natural :=
 ovl_get_ctrl_val(severity_level, controls.severity_level_default);
 constant property_type_ctrl : ovl_property_type_natural :=
 ovl_get_ctrl_val(property_type, controls.property_type_default);
 constant msg_ctrl : string :=
 ovl_get_ctrl_val(msg, controls.msg_default);
 begin
 if (controls.init_count_ctrl = OVL_ON) then
 ovl_init_count := ovl_init_count + 1;
 else
 case (property_type_ctrl) is
 when OVL_ASSERT | OVL_ASSUME | OVL_ASSERT_2STATE
 | OVL_ASSUME_2STATE =>
 write(ln, “OVL_NOTE: “ & OVL_VERSION & “: “
 & assert_name
 & “ initialized @ “ & path
 & “ Severity: “ &
 ovl_severity_level’image(severity_level_ctrl)
 & “, Message: “ & msg_ctrl);
 writeline(output, ln);
 when OVL_IGNORE => NULL;
 end case;
 end if;
 end procedure ovl_init_msg_proc;

Accellera Standard OVL V2 LRM, 2.8.164

OVL Basics
VHDL OVL

March 2014

 -- ovl_cover_proc

 procedure ovl_cover_proc (
 constant cvr_msg : in string;
 constant assert_name : in string;
 constant path : in string;
 constant controls : in ovl_ctrl_record;
 variable cover_count : inout natural
) is
 variable ln : line;
 begin
 cover_count := cover_count + 1;

 if (cover_count <= controls.max_report_cover_point) then
 write(ln, “OVL_COVER_POINT : “
 & assert_name & “ : “
 & cvr_msg & “ : “
 & “time “ & time’image(now)
 & “ “ & path);
 writeline(output, ln);
 end if;
 end procedure ovl_cover_proc;

 -- ovl_finish_proc

 procedure ovl_finish_proc (
 constant assert_name : in string;
 constant path : in string;
 constant runtime_after_fatal : in string;
 signal fatal_sig : in std_logic
) is
 variable ln : line;
 variable runtime_after_fatal_time : time;
 begin
 if (fatal_sig = ‘1’) then
 -- convert string to time
 write(ln, runtime_after_fatal);
 read(ln, runtime_after_fatal_time);

 wait for runtime_after_fatal_time;
 report “ OVL : Simulation stopped due to a fatal error : “ &
 assert_name & “ : “ & “time “ &
 time’image(now) & “ “ & path severity failure;
 end if;
 end procedure ovl_finish_proc;

OVL Basics
VHDL OVL

Accellera Standard OVL V2 LRM, 2.8.1 65
March 2014

 -- ovl_2state_is_on

 function ovl_2state_is_on (
 constant controls : in ovl_ctrl_record;
 constant property_type : in ovl_property_type
) return boolean is
 constant property_type_ctrl : ovl_property_type_natural :=
 ovl_get_ctrl_val(property_type, controls.property_type_default);
 begin
 return (controls.assert_ctrl = OVL_ON) and
 (property_type_ctrl /= OVL_IGNORE);
 end function ovl_2state_is_on;

 -- ovl_xcheck_is_on

 function ovl_xcheck_is_on (
 constant controls : in ovl_ctrl_record;
 constant property_type : in ovl_property_type;
 constant explicit_x_check : in boolean
) return boolean is
 constant property_type_ctrl : ovl_property_type_natural :=
 ovl_get_ctrl_val(property_type, controls.property_type_default);
 begin
 return (controls.assert_ctrl = OVL_ON) and
 (property_type_ctrl /= OVL_IGNORE) and
 (property_type_ctrl /= OVL_ASSERT_2STATE) and
 (property_type_ctrl /= OVL_ASSUME_2STATE) and
 (controls.xcheck_ctrl = OVL_ON) and
 ((controls.implicit_xcheck_ctrl = OVL_ON) or explicit_x_check);
 end function ovl_xcheck_is_on;

 -- ovl_get_ctrl_val

 function ovl_get_ctrl_val (
 constant instance_val : in integer;
 constant default_ctrl_val : in natural
) return natural is
 begin
 if (instance_val = OVL_NOT_SET) then
 return default_ctrl_val;
 else
 return instance_val;
 end if;
 end function ovl_get_ctrl_val;

Accellera Standard OVL V2 LRM, 2.8.166

OVL Basics
VHDL OVL

March 2014

 -- ovl_get_ctrl_val

 function ovl_get_ctrl_val (
 constant instance_val : in string;
 constant default_ctrl_val : in string
) return string is
 variable msg_default_width : integer := ovl_msg_default_type’high;
 begin
 if (instance_val = OVL_MSG_NOT_SET) then
 -- get width of msg_default value
 for i in 1 to ovl_msg_default_type’high loop
 if (default_ctrl_val(i) = NUL) then
 msg_default_width := i - 1;
 exit;
 end if;
 end loop;

 return default_ctrl_val(1 to msg_default_width);
 else
 return instance_val;
 end if;
 end function ovl_get_ctrl_val;

 -- cover_item_set
 -- determines if a bit in the level integer is set or not.

 function cover_item_set (
 constant level : in ovl_coverage_level;
 constant item : in ovl_coverage_level
) return boolean is
 begin
 return ((level mod (item * 2)) >= item);
 end function cover_item_set;

 -- ovl_is_x

 function ovl_is_x (
 s : in std_logic
) return boolean is
 begin
 return is_x(s);
 end function ovl_is_x;

 -- ovl_is_x

 function ovl_is_x (
 s : in std_logic_vector
) return boolean is
 begin
 return is_x(s);
 end function ovl_is_x;

OVL Basics
VHDL OVL

Accellera Standard OVL V2 LRM, 2.8.1 67
March 2014

 -- or_reduce

 function or_reduce (
 v : in std_logic_vector
) return std_logic is
 variable result : std_logic;
 begin
 for i in v’range loop
 if i = v’left then
 result := v(i);
 else
 result := result or v(i);
 end if;
 exit when result = ‘1’;
 end loop;
 return result;
 end function or_reduce;

 -- and_reduce

 function and_reduce (
 v : in std_logic_vector
) return std_logic is
 variable result : std_logic;
 begin
 for i in v’range loop
 if i = v’left then
 result := v(i);
 else
 result := result and v(i);
 end if;
 exit when result = ‘0’;
 end loop;
 return result;
 end function and_reduce;

 -- xor_reduce

 function xor_reduce (
 v : in std_logic_vector
) return std_logic is
 variable result : std_logic;
 begin
 for i in v’range loop
 if i = v’left then
 result := v(i);
 else
 result := result xor v(i);
 end if;
 end loop;
 return result;
 end function xor_reduce;

Accellera Standard OVL V2 LRM, 2.8.168

OVL Basics
VHDL OVL

March 2014

 -- “sll”

 function “sll” (
 l : in std_logic_vector;
 r : in integer
) return std_logic_vector is
 begin
 return to_stdlogicvector(to_bitvector(l) sll r);
 end function “sll”;

 -- “srl”

 function “srl” (
 l : in std_logic_vector;
 r : in integer
) return std_logic_vector is
 begin
 return to_stdlogicvector(to_bitvector(l) srl r);
 end function “srl”;

 -- private functions used by “<“ and “>” functions

 -- unsigned_num_bits

 function unsigned_num_bits (arg: natural) return natural is
 variable nbits: natural;
 variable n: natural;
 begin
 n := arg;
 nbits := 1;
 while n > 1 loop
 nbits := nbits+1;
 n := n / 2;
 end loop;
 return nbits;
 end unsigned_num_bits;

 -- to_unsigned

 function to_unsigned (arg, size: natural) return std_logic_vector is
 variable result: std_logic_vector(size-1 downto 0);
 variable i_val: natural := arg;
 begin
 for i in 0 to result’left loop
 if (i_val mod 2) = 0 then
 result(i) := ‘0’;
 else result(i) := ‘1’;
 end if;
 i_val := i_val/2;
 end loop;
 return result;
 end to_unsigned;

OVL Basics
VHDL OVL

Accellera Standard OVL V2 LRM, 2.8.1 69
March 2014

 -- unsigned comparison functions
 -- Note: the width of l must be > 0.

 --“>”

 function “>” (
 l : in std_logic_vector;
 r : in natural
) return boolean is
 begin
 if is_x(l) then return false; end if;
 if unsigned_num_bits(r) > l’length then return false; end if;
 return not (l <= to_unsigned(r, l’length));
 end function “>”;

 -- “<“

 function “<“ (
 l : in std_logic_vector;
 r : in natural
) return boolean is
 begin
 if is_x(l) then return false; end if;
 if unsigned_num_bits(r) > l’length then return 0 < r; end if;
 return (l < to_unsigned(r, l’length));
 end function “<“;

end package body std_ovl_procs;

Accellera Standard OVL V2 LRM, 2.8.170

OVL Basics
VHDL OVL

March 2014

Accellera Standard OVL V2 LRM, 2.8.1 71
March 2014

Chapter 3
OVL Checkers

Each OVL assertion checker type has a data sheet that provides the specification for checkers of
that type. This chapter lists the checker data sheets in alphabetical order by checker type. Data
sheets contain the following information:

• Syntax

Syntax statement for specifying a checker of the type, with:

• Parameters/Generics — parameters/generics that configure the checker.

• Ports — checker ports.

• Description

Description of the functionality and usage of checkers of the type, with:

• Assertion Checks — violation types (or messages) with descriptions of failures.

• Cover Points — cover point messages with descriptions.

• Cover Groups — cover group messages with descriptions.

• Errors* — possible errors that are not assertion failures.

• Notes*

Notes describing any special features or requirements.

• See also

List of other similar checker types.

• Examples

Examples of directives and checker applications.

* not applicable to all checker types.

Accellera Standard OVL V2 LRM, 2.8.172

OVL Checkers
ovl_always

March 2014

ovl_always
Checks that the value of an expression is TRUE.

Syntax
ovl_always

[#(severity_level, property_type, msg, coverage_level, clock_edge,
reset_polarity, gating_type)]

instance_name (clock, reset, enable, test_expr, fire);

Parameters/Generics

Ports

Parameters/Generics:
severity_level
property_type
msg

coverage_level
clock_edge
reset_polarity
gating_type

Class: 1-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

ovl_always

fire[OVL_FIRE_WIDTH-1:0]

test_expr

clock reset enable

OVL Checkers
ovl_always

Accellera Standard OVL V2 LRM, 2.8.1 73
March 2014

Description
The ovl_always assertion checker checks the single-bit expression test_expr at each active edge
of clock. If test_expr is not TRUE, an always check violation occurs.

Assertion Checks

Implicit X/Z Checks

Cover Points

none

Cover Groups

none

See also

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

test_expr Expression that should evaluate to TRUE on the active clock
edge.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

ALWAYS Expression did not evaluate to TRUE.

test_expr contains X or Z Expression value was X or Z.

ovl_always_on_edge
ovl_implication

ovl_never
ovl_proposition

Accellera Standard OVL V2 LRM, 2.8.174

OVL Checkers
ovl_always

March 2014

Example

Checks that (reg_a < reg_b) is TRUE at each rising edge of clock.

ovl_always #(

‘OVL_ERROR,
‘OVL_ASSERT,
“Error: reg_a < reg_b is not TRUE”,
‘OVL_COVER_NONE,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

reg_a_lt_reg_b (

clock,
reset,
enable,
reg_a < reg_b,
fire);

// clock
// reset
// enable
// test_expr
// fire

clock

reset

reg_a < reg_b

ALWAYS Error: reg_a < reg_b is not TRUE

OVL Checkers
ovl_always_on_edge

Accellera Standard OVL V2 LRM, 2.8.1 75
March 2014

ovl_always_on_edge
Checks that the value of an expression is TRUE when a sampling event undergoes a specified
transition.

Syntax
ovl_always_on_edge

[#(severity_level, edge_type, property_type, msg, coverage_level,
clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, sampling_event, test_expr, fire);

Parameters/Generics

Parameters/Generics:
severity_level
edge_type
property_type
msg

coverage_level
clock_edge
reset_polarity
gating_type

Class: 2-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

edge_type Transition type for sampling event: OVL_NOEDGE,
OVL_POSEDGE, OVL_NEGEDGE or OVL_ANYEDGE.
Default: OVL_NOEDGE.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

ovl_always_on_edge

fire[OVL_FIRE_WIDTH-1:0]

sampling_event

test_expr

clock reset enable

Accellera Standard OVL V2 LRM, 2.8.176

OVL Checkers
ovl_always_on_edge

March 2014

Ports

Description
The ovl_always_on_edge assertion checker checks the single-bit expression sampling_event for
a particular type of transition. If the specified transition of the sampling event occurs, the single-
bit expression test_expr is evaluated at the active edge of clock to verify the expression does not
evaluate to FALSE.

The edge_type parameter determines which type of transition of sampling_event initiates the
check:

• OVL_POSEDGE performs the check if sampling_event transitions from FALSE to
TRUE.

• OVL_NEGEDGE performs the check if sampling_event transitions from TRUE to
FALSE.

• OVL_ANYEDGE performs the check if sampling_event transitions from TRUE to
FALSE or from FALSE to TRUE.

• OVL_NOEDGE always initiates the check. This is the default value of edge_type. In
this case, sampling_event is never sampled and the checker has the same functionality as
ovl_always.

The checker is a variant of ovl_always, with the added capability of qualifying the assertion
with a sampling event transition. This checker is useful when events are identified by their
transition in addition to their logical state.

Assertion Checks

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

sampling_event Expression that (along with edge_type) identifies when to
evaluate and test test_expr.

test_expr Expression that should evaluate to TRUE on the active clock
edge.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

ALWAYS_ON_EDGE Expression evaluated to FALSE when the sampling event
transitioned as specified by edge_type.

OVL Checkers
ovl_always_on_edge

Accellera Standard OVL V2 LRM, 2.8.1 77
March 2014

Implicit X/Z Checks

Cover Points

none

Cover Groups

none

See also

Examples
Example 1

test_expr contains X or Z Expression value was X or Z.

sampling_event contains X
or Z

Sampling event value was X or Z.

ovl_always
ovl_implication

ovl_never
ovl_proposition

ovl_always_on_edge #(

‘OVL_ERROR,
‘OVL_POSEDGE,
‘OVL_ASSERT,
“Error: new req when FSM not ready”,
‘OVL_COVER_NONE,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// edge_type
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

request_when_FSM_idle (

clock,
reset,
enable,
req,
state == ‘IDLE,
fire_request_when_FSM_idle);

// clock
// reset
// enable
// sampling_event
// test_expr
// fire

Accellera Standard OVL V2 LRM, 2.8.178

OVL Checkers
ovl_always_on_edge

March 2014

Checks that (state == ‘IDLE) is TRUE at each rising edge of clock when req transitions from
FALSE to TRUE.

Example 2

Checks that (state == ‘IDLE) is TRUE at each rising edge of clock when req transitions from
TRUE to FALSE or from FALSE to TRUE.

ovl_always_on_edge #(

‘OVL_ERROR,
‘OVL_ANYEDGE,
‘OVL_ASSERT,
“Error: req transition when FSM not idle”,
‘OVL_COVER_NONE,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// edge_type
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

req_transition_when_FSM_idle (

clock,
reset,
enable,
req,
state == ‘IDLE,
fire_req_transition_when_FSM_idle);

// clock
// reset
// enable
// sampling_event
// test_expr
// fire

clock

reset

state

ALWAYS_ON_EDGE Error: new req when FSM not ready

req

‘IDLE ‘WR ‘IDLE ‘RD ‘WAIT

clock

reset

state

ALWAYS_ON_EDGE Error: req transition when FSM not idle

req

‘IDLE ‘WR ‘IDLE ‘RD ‘WAIT

OVL Checkers
ovl_always_on_edge

Accellera Standard OVL V2 LRM, 2.8.1 79
March 2014

Example 3

Checks that (!req || (state == ‘IDLE)) is TRUE at each rising edge of clock.

ovl_always_on_edge #(

‘OVL_ERROR,
‘OVL_NOEDGE,
‘OVL_ASSERT,
“Error: req when FSM not idle”,
‘OVL_COVER_NONE,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// edge_type
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

req_when_FSM_idle (

clock,
reset,
enable,
1’b0,
!req || (state == ‘IDLE),
fire_req_when_FSM_idle);

// clock
// reset
// enable
// sampling_event
// test_expr
// fire

clock

reset

state

ALWAYS_ON_EDGE Error: req when FSM not idle

req

‘IDLE ‘WR ‘IDLE ‘RD ‘WAIT

Accellera Standard OVL V2 LRM, 2.8.180

OVL Checkers
ovl_arbiter

March 2014

ovl_arbiter
Checks that a resource arbiter provides grants to corresponding requests according to a specified
arbitration scheme and within a specified time window.

Syntax
ovl_arbiter

[#(severity_level, width, priority_width, min_cks, max_cks,
one_cycle_gnt_check, priority_check, arbitration_rule,
property_type, msg, coverage_level, clock_edge, reset_polarity,
gating_type)]

instance_name (clock, reset, enable, reqs, priorities, gnts, fire);

Parameters/Generics

Parameters/Generics:
severity_level
width
priority_width
min_cks
max_cks
arbitration_rule
priority_check

one_cycle_gnt_check
property_type
msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: event-bounded assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of reqs and gnts ports (number of channels). Default: 2.

priority_width Number of bits to encode a priority value in priorities. Default: 1.

min_cks Minimum number of clock cycles after a request that its grant can
be issued. If min_cks

OVL Checkers
ovl_arbiter

Accellera Standard OVL V2 LRM, 2.8.1 81
March 2014

Ports

arbitration_rule Arbitration scheme used by the arbiter. This parameter turns on
the corresponding check for the arbitration scheme.
arbitration_rule = 0 (Default) no scheme
arbitration_rule = 1 fair (round robin)
arbitration_rule = 2 FIFO
arbitration_rule = 3 least-recently used

priority_check Whether or not to perform priority checks.
priority_check = 0 (Default)

Turns off the priority check.
priority_check = 1

Turns on the priority check. The min_cks parameter must be 0
or 1.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

reqs[width-1:0] Concatenation of request signals to the arbiter. Each bit in the
vector is a request from the corresponding channel.

priorities
[priority_width*width
-1:0]

Concatenation of non-negative integer values corresponding to
the request priorities of the corresponding req channels (0 is the
lowest priority). If the priority check is on, priorities must not
change while any channel is waiting for a grant (otherwise
certain checks might produce incorrect results). If the priority
check is off, this port is ignored (however, the port must be
configured with the specified width).

Accellera Standard OVL V2 LRM, 2.8.182

OVL Checkers
ovl_arbiter

March 2014

Description
The ovl_arbiter checker checks that an arbiter follows a specified arbitration process. The
checker checks reqs and gnts at each active edge of clock. These are two bit vectors
representing respectively requests from the channels and grants from the arbiter. Both vectors
have the same size (width), which is the same as the number of channels.

A request from a channel is signaled by asserting its corresponding reqs bit, which should be
followed (according to the configured arbitration rules) by a responding assertion of the same
bit in gnts. If a request deasserts before the arbiter issues the corresponding grant, all checks for
that request are cancelled. If a request remains asserted in the cycle its grant is issued, a new
request is assumed.

The ovl_arbiter checker checks the following rules:

• A grant should not be issued to a channel without a request.

• A grant asserts for one cycle (unless the grant is for consecutive requests).

• A grant should be issued in the time window specified by [min_cks:max_cks] after its
request.

The ovl_arbiter checker can be configured to check that at most one grant is issued each cycle
(i.e., a single grant at a time).

The ovl_arbiter checker also can be configured to check a specific arbitration scheme by turning
the priority check on or off and selecting a value for arbitration_rule. The combination of the
two selections determines the expected arbitration scheme.

• Primary rule.

If the priority check is on, priority arbitration is the primary rule. When a request is
made, the values in priorities are the priorities of the corresponding channels in
ascending priority order (a value of 0 is the lowest priority). If multiple requests are
pending, the grant should be issued to the channel with the highest priority. If more than
one channel has the highest priority, the grant is made according to the secondary rule
(applied to the channels with that priority).

If the priority check is off, only the secondary rule is used to arbitrate the grant.

gnts[width-1:0] Concatenation of grant signals from the arbiter. Each bit in the
vector is a grant to the corresponding channel.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

OVL Checkers
ovl_arbiter

Accellera Standard OVL V2 LRM, 2.8.1 83
March 2014

• Secondary rule.

The secondary rule is determined by the arbitration_rule parameter. This rule applies to
the channels with the highest priority if the priority check is on and to all channels if the
priority check is off. If arbitration_rule is 0, no secondary rule is assumed (if the
priority check is on and multiple channels have the highest priority, any of them can
receive the grant). If the priority check is off, no arbitration scheme checks are
performed.

If arbitration_rule is not 0, the secondary rule is one of the following:

• Fairness or round-robin rule (arbitration_rule is 1).

Grant is not issued to a (high-priority) channel that has received a grant while
another channel’s request is pending.

• First-in first-out (FIFO) rule (arbitration_rule is 2).

Grant is issued to a (high-priority) channel with the longest pending request.

• Least-recently used (LRU) rule (arbitration_rule is 3).

Grant is issued to a (high-priority) channel whose previous grant was issued the
longest time before the current cycle.

Assertion Checks

GNT_ONLY_IF_REQ Grant was issued without a request.
Gnt bit was TRUE, but the corresponding req bit was not
TRUE or transitioning from TRUE.

ONE_CYCLE_GNT Grant was asserted for longer than 1 cycle.
Grant was TRUE for 2 cycles in response to only one request.

GNT_IN_WINDOW Grant was not issued within the specified time
window.

Grant was issued before min_cks cycles or no grant was
issued by max_cks cycles.

HIGHEST_PRIORITY Grant was issued for a request other than the highest
priority request.

priority_check = 1
Grant was issued, but another pending request had higher
priority than all the requests that received grants.

FAIRNESS Two grants were issued to the same channel while
another channel’s request was pending.

arbitration_rule = 1
Two grants were issued to a channel while a request from
another channel was pending (violating the fairness rule).

Accellera Standard OVL V2 LRM, 2.8.184

OVL Checkers
ovl_arbiter

March 2014

Implicit X/Z Checks

Cover Points

FIFO Grant was issued for a request that was not the
longest pending request.

arbitration_rule = 2
Grant was issued, but one or more other (high priority)
requests were pending longer than the granted request
(violating the FIFO rule).

LRU Grant was issued to a channel that was more-recently
used than another channel with a pending request.

arbitration_rule = 3
Grant was issued, but another channel with a pending (high
priority) request received its previous grant before the granted
channel received its previous grant (violating the fairness
rule).

SINGLE_GRANT Multiple grants were issued in the same clock cycle.
one_cycle_gnt_check = 1
More than one gnts bit was TRUE in the same clock cycle.

reqs contains X or Z Requests contained X or Z bits. Because this value is held
internally, the checker cannot operate correctly until reset.

grants contains X or Z Grants contained X or Z bits. Because this value is held
internally, the checker cannot operate correctly until reset.

priorities contains X or Z Priorities contained X or Z bits.

cover_req_granted BASIC — Number of granted requests for each channel.

cover_req_aborted BASIC — Number of aborted requests for each channel.

cover_req_granted_at_
min_cks

CORNER — Number of times grant was issued min_cks cycles
after its request was asserted.

cover_req_granted_at_
max_cks

CORNER — Number of times grant was issued max_cks cycles
after its request was asserted.

time_to_grant STATISTIC — Reports the number of requests granted at each
cycle in the time window.

concurrent_requests STATISTIC — Reports for each channel, the number of times
each other channel had requests concurrent with that channel.

OVL Checkers
ovl_arbiter

Accellera Standard OVL V2 LRM, 2.8.1 85
March 2014

Cover Groups

time_to_grant Number of grants with the specified request-to-grant latency.
Bins are:
• time_to_grant_good[min_cks:max_cks] — bin index is the

observed latency in clock cycles.
• time_to_grant_bad — default.

concurrent_requests Number of cycles with the specified number of concurrent
requests. Bins are:
• observed_reqs_good[1:width] — bin index is the number of

concurrent requests.

Accellera Standard OVL V2 LRM, 2.8.186

OVL Checkers
ovl_bits

March 2014

ovl_bits
Checks that the number of asserted (or deasserted) bits of the value of an expression is within a
specified range.

Syntax
ovl_bits

[#(severity_level, min, max, width, asserted, property_type, msg,
coverage_level, clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, test_expr, fire);

Parameters/Generics

Parameters/Generics:
severity_level
width
asserted
min
max

property_type
msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: 1-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of the test_expr argument. Default: 1.

asserted Whether to count asserted or deasserted bits.
asserted = 0

Counts FALSE (deasserted) bits.
asserted = 1 (Default)

Counts TRUE (asserted) bits.

min Whether or not to perform min checks. Default: 1.
min = 0

Turns off the min check.
min ≥ 1

Minimum number of bits in test_expr that should be asserted
(or deasserted).

max Maximum number of bits in test_expr that should be asserted (or
deasserted). Max must be ≥ min. Default: 1.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

ovl_bits

fire[OVL_FIRE_WIDTH-1:0]

test_expr[width-1:0]

clock reset enable

OVL Checkers
ovl_bits

Accellera Standard OVL V2 LRM, 2.8.1 87
March 2014

Ports

Description
The ovl_bits checker checks the multiple-bit expression test_expr at each active edge of clock
and counts the number of TRUE bits (if asserted is 1) or FALSE bits (if asserted is 0). If the
count is < min a min violation occurs and if the count is > max, a max violation occurs. X and Z
bits are not included in the bit count.

Assertion Checks

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

test_expr[width-1:0] Variable or expression to check.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

MIN Fewer than ‘min’ bits were asserted.
min > 0 and asserted = 1
The number of TRUE bits in the value of test_expr was less
than the minimum specified by min.

Fewer than ‘min’ bits were deasserted.
min > 0 and asserted = 0
The number of FALSE bits in the value of test_expr was less
than the minimum specified by min.

MAX More than ‘max’ bits were asserted.
asserted = 1
The number of TRUE bits in the value of test_expr was more
than the maximum specified by max.

More than ‘max’ bits were deasserted.
asserted = 0
The number of FALSE bits in the value of test_expr was
more than the maximum specified by max.

Accellera Standard OVL V2 LRM, 2.8.188

OVL Checkers
ovl_bits

March 2014

Implicit X/Z Checks

Cover Points

Cover Groups

none

See also

Illegal parameter
values set where
min > max

Max is not 0, but max < min.

test_expr contains X or Z Expression contained X or Z bits.

cover_values_checked SANITY — Number of cycles test_expr changed value.

cover_bits_within_
limit

BASIC — Number of cycles the number of counted test_expr
bits was in range.

cover_bits_at_min CORNER — Number of cycles the number of counted test_expr
bits was min.

cover_bits_at_max CORNER — Number of cycles the number of counted test_expr
bits was max.

ovl_mutex
ovl_one_cold

ovl_one_hot

OVL Checkers
ovl_bits

Accellera Standard OVL V2 LRM, 2.8.1 89
March 2014

Examples

Checks that id_sel has exactly 1 or 2 TRUE bits each clk cycle id_ok is TRUE.

ovl_bits #(

‘OVL_ERROR,
4,
1,
1,
2,
‘OVL_ASSERT,
“Error: ID select bits out of range.”,
‘OVL_COVER_NONE,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// width
// asserted
// min
// max
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

ovl_id_sel_bits_in_range (

clk,
reset,
id_ok,
id_sel,
fire_id_sel_bits);

// clock
// reset
// enable
// test_expr
// fire

clk

id_ok

id_sel

fire_id_sel_bits

1111 0000 0100 0111 0000 1000

OVL_BITS_MAX
Error: ID select bits out of range.

0110

More than ‘max’ bits were asserted.

OVL_BITS_MIN
Error: ID select bits out of range.
Fewer than ‘min’ bits were asserted.

Accellera Standard OVL V2 LRM, 2.8.190

OVL Checkers
ovl_change

March 2014

ovl_change
Checks that the value of an expression changes within a specified number of cycles after a start
event initiates checking.

Syntax
ovl_change

[#(severity_level, width, num_cks, action_on_new_start,
property_type, msg, coverage_level, clock_edge, reset_polarity,
gating_type)]

instance_name (clock, reset, enable, start_event, test_expr, fire);

Parameters/Generics

Parameters/Generics:
severity_level
width
num_cks
action_on_new_start
property_type

msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: n-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of the test_expr argument. Default: 1.

num_cks Number of cycles to check for a change in the value of test_expr.
Default: 1.

action_on_new_start Method for handling a new start event that occurs before
test_expr changes value or num_cks clock cycles transpire
without a change. Values are: OVL_IGNORE_NEW_START,
OVL_RESET_ON_NEW_START and
OVL_ERROR_ON_NEW_START. Default:
OVL_IGNORE_NEW_START.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

ovl_change

fire[OVL_FIRE_WIDTH-1:0]

start_event

test_expr[width-1:0]

OVL Checkers
ovl_change

Accellera Standard OVL V2 LRM, 2.8.1 91
March 2014

Ports

Description
The ovl_change assertion checker checks the expression start_event at each active edge of clock
to determine if it should check for a change in the value of test_expr. If start_event is sampled
TRUE, the checker evaluates test_expr and re-evaluates test_expr at each of the subsequent
num_cks active edges of clock. If the value of test_expr has not changed from its start value by
the last of the num_cks cycles, the assertion fails.

The method used to determine how to handle a new start event, when the checker is in the state
of checking for a change in test_expr, is controlled by the action_on_new_start parameter. The
checker has the following actions:

• OVL_IGNORE_NEW_START

The checker does not sample start_event for the next num_cks cycles after a start event
(even if test_expr changed).

• OVL_RESET_ON_NEW_START

The checker samples start_event every cycle. If a check is pending and the value of
start_event is TRUE, the checker terminates the pending check (no violation occurs
even if the current cycle is num_cks cycles after the start event and test_expr has not
changed) and initiates a new check with the current value of test_expr.

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

start_event Expression that (along with action_on_new_start) identifies
when to start checking test_expr .

test_expr[width-1:0] Expression that should change value within num_cks cycles from
the start event unless the check is interrupted by a valid new start
event.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

Accellera Standard OVL V2 LRM, 2.8.192

OVL Checkers
ovl_change

March 2014

• OVL_ERROR_ON_NEW_START

The checker samples start_event every cycle. If a check is pending and the value of
start_event is TRUE, the assertion fails with an illegal start event violation. In this case,
the checker does not initiate a new check and does not terminate a pending check.

The checker is useful for ensuring proper changes in structures after various events, such as
verifying synchronization circuits respond after initial stimuli. For example, it can be used to
check the protocol that an “acknowledge” occurs within a certain number of cycles after a
“request”. It also can be used to check that a finite-state machine changes state after an initial
stimulus.

Assertion Checks

Implicit X/Z Checks

Cover Points

Cover Groups

none

CHANGE The test_expr expression did not change value for num_cks
cycles after start_event was sampled TRUE.

illegal start event The action_on_new_start parameter is set to
OVL_ERROR_ON_NEW_START and start_event expression
evaluated to TRUE while the checker was in the state of checking
for a change in the value of test_expr.

test_expr contains X or Z Expression value contained X or Z bits.

start_event contains X or Z Start event value was X or Z.

cover_window_open BASIC — A change check was initiated.

cover_window_close BASIC — A change check lasted the full num_cks cycles. If no
assertion failure occurred, the value of test_expr changed in the
last cycle.

cover_window_resets CORNER — The action_on_new_start parameter is
OVL_RESET_ON_NEW_START, and start_event was sampled
TRUE while the checker was monitoring test_expr, but it had not
changed value.

OVL Checkers
ovl_change

Accellera Standard OVL V2 LRM, 2.8.1 93
March 2014

See also

Examples
Example 1

Checks that out changes within 3 cycles after sync asserts. New starts are ignored.

ovl_time
ovl_unchange
ovl_win_change

ovl_win_unchange
ovl_window

ovl_change #(

‘OVL_ERROR,
1,
3,
‘OVL_IGNORE_NEW_START,
‘OVL_ASSERT,
“Error: invalid synchronization”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// width
// num_cks
// action_on_new_start
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_sync_out (

clock,
reset,
enable,
sync == 1,
out,
fire_valid_sync_out);

// clock
// reset
// enable
// start_event
// test_expr
// fire

clock

reset

CHANGE Error: invalid synchronization

out

sync
1 2 3x1 2 3x x x x

x start events ignored

Accellera Standard OVL V2 LRM, 2.8.194

OVL Checkers
ovl_change

March 2014

Example 2

Checks that out changes within 3 cycles after sync asserts. A new start terminates the pending
check and initiates a new check.

ovl_change #(

‘OVL_ERROR,
1,
3,
‘OVL_RESET_ON_NEW_START,
‘OVL_ASSERT,
“Error: invalid synchronization”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// width
// num_cks
// action_on_new_start
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_sync_out (

clock,
reset,
enable,
sync == 1,
out,
fire_valid_sync_out);

// clock
// reset
// enable
// start_event
// test_expr
// fire

clock

reset

CHANGE Error: invalid synchronization

out

sync

2 31 1

x start events reset change check

1 2 3x 1 x xx

OVL Checkers
ovl_change

Accellera Standard OVL V2 LRM, 2.8.1 95
March 2014

Example 3

Checks that out changes within 3 cycles after sync asserts. A new start reports an illegal start
event violation (without initiating a new check) but any pending check is retained (even on the
last check cycle).

ovl_change #(

‘OVL_ERROR,
1,
3,
‘OVL_ERROR_ON_NEW_START,
‘OVL_ASSERT,
“Error: invalid synchronization”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// width
// num_cks
// action_on_new_start
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_sync_out (

clock,
reset,
enable,
sync == 1,
out,
fire_valid_sync_out);

// clock
// reset
// enable
// start_event
// test_expr
// fire

clock

reset

CHANGE Error: invalid synchronization

out

sync
2 31

illegal start event

2 31

Accellera Standard OVL V2 LRM, 2.8.196

OVL Checkers
ovl_code_distance

March 2014

ovl_code_distance
Checks that when an expression changes value, the number of bits in the new value that are
different from the bits in the value of a second expression is within a specified range.

Syntax
ovl_code_distance

[#(severity_level, min, max, width, property_type, msg,
coverage_level, clock_edge, reset_polarity,
gating_type)]

instance_name (clock, reset, enable, test_expr1, test_expr2, fire);

Parameters/Generics

Parameters/Generics:
severity_level
width
min
max
property_type

msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: 1-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of test_expr and test_expr2. Default: 1.

min Minimum code distance. Default: 1.

max Maximum code distance. Default: 1.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

ovl_code_distance

fire[OVL_FIRE_WIDTH-1:0]

test_expr1[width-1:0]

test_expr2[width-1:0]

clock reset enable

OVL Checkers
ovl_code_distance

Accellera Standard OVL V2 LRM, 2.8.1 97
March 2014

Ports

Description
The ovl_code_distance assertion checker checks the expression test_expr1 at each active edge
of clock to determine if test_expr1 has changed value. If so, the checker evaluates a second
expression test_expr2 and calculates the absolute value of the difference between the two values
(called the code distance). If the code distance is < min or > max, the assertion fails and a
code_distance violation occurs.

Assertion Checks

Implicit X/Z Checks

Cover Points

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

test_expr1[width-1:0] Variable or expression to check when its value changes.

test_expr2[width-1:0] Variable or expression from which the code distance from
test_expr1 is calculated.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

CODE_DISTANCE Code distance was not within specified limits.
Code distance from test_expr1 to test_expr2 is less than min
or greater than max.

test_expr1 contains X or Z Expression contained X or Z bits.

test_expr2 contains X or Z Second expression contained X or Z bits.

cover_test_expr_
changes

SANITY — Number of cycles test_expr1 changed value.

cover_code_distance_
within_limit

BASIC — Number of cycles test_expr1 changed to a value
whose code distance from test_expr2 was in the range from min
to max.

observed_code_
distance

BASIC — Reports the code distances that occurred at least once.

cover_code_distance_
at_min

CORNER — Number of cycles test_expr1 changed to a value
whose code distance from test_expr2 was min.

Accellera Standard OVL V2 LRM, 2.8.198

OVL Checkers
ovl_code_distance

March 2014

Cover Groups

cover_code_distance_
at_max

CORNER — Number of cycles test_expr1 changed to a value
whose code distance from test_expr2 was max.

observed_code_distance Number of cycles test_expr1 changed to a value having the
specified code distance from test_expr2. Bins are:
• observed_code_distance_good[min:max] — bin index is the

code distance from test_expr2.
• observed_code_distance_bad — default.

OVL Checkers
ovl_coverage

Accellera Standard OVL V2 LRM, 2.8.1 99
March 2014

ovl_coverage
Ensures that an HDL statement is covered during simulation.

Syntax
ovl_coverage

[#(severity_level, property_type, msg, coverage_level, clock_edge,
reset_polarity, gating_type)]

instance_name (clock, reset, enable, test_expr, fire);

Parameters/Generics

Ports

Parameters/Generics:
severity_level
property_type
msg
coverage_level

clock_edge
reset_polarity
gating_type

Class: 1-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the checker. The checker samples on the rising
edge of the clock.

reset Synchronous reset signal indicating completed initialization.

enable Expression that indicates whether or not to check test_expr.

ovl_coverage

fire[OVL_FIRE_WIDTH-1:0]

test_expr

clock reset enable

Accellera Standard OVL V2 LRM, 2.8.1100

OVL Checkers
ovl_coverage

March 2014

Description
The test_expr must not be 1 when the checker is enabled. The checker checks the single-bit
expression test_expr at each rising edge of clock whenever enable is TRUE. If test_expr is 1,
the assertion fails and msg is printed.

This checker is used to determine coverage of the test_expr and to gather coverpoint data. As
such, the sense of the assertion is reversed. Unlike other OVL checkers (which verify assertions
that are not expected to fail), ovl_coverage checkers’ assertions are intended to fail. You can set
property_type to `OVL_IGNORE to disable the OVL_COVERED assertion check, but retain
the collection of cover point data.

Assertion Checks

Implicit X/Z Checks

Cover Points

Cover Groups

None

See also

test_expr Signal or expression to check.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

COVERAGE The HDL statement was covered.

Expression evaluated to 1.

test_expr contains X or Z Expression contained X or Z bits.

cover_values_checked SANITY — Number of cycles test_expr changed value.

cover_computations_
checked

STATISTIC — Number of times test_expr was 1 when enable
was TRUE.

ovl_value_coverage

OVL Checkers
ovl_coverage

Accellera Standard OVL V2 LRM, 2.8.1 101
March 2014

Examples
ovl_coverage #(

.severity_level(‘OVL_INFO),

.property_type(‘OVL_ASSERT),

.msg(“OVL_COVERAGE: queue full”),

.coverage_level(‘OVL_COVER_ALL))
ovl_cover_queue_state_full(

.clock(clock),

.reset(reset),

.enable(accept_requests),

.test_expr(cur_state == FULL),
.fire(fire));

Issues a coverage message when accept_requests is TRUE and cur_state is FULL at the rising
edge of clock.

clk

reset

OVL_COVERAGE

accept_requests

cur_state EMPTY Q2 FULL Q3 Q2 Q1

The HDL statement was covered

Accellera Standard OVL V2 LRM, 2.8.1102

OVL Checkers
ovl_crc

March 2014

ovl_crc
Ensures that the CRC checksum values for a specified expression are calculated properly.

Syntax
ovl_crc

[#(severity_level, width, data_width, crc_width, crc_enable,
crc_latch_enable, polynomial, standard_polynomial,
initial_value, lsb_first, big_endian, reverse_endian, invert,
combinational, property_type, msg, coverage_level, clock_edge,
reset_polarity, gating_type)]

instance_name (clock, reset, enable, test_expr, initialize, valid,
compare, crc, crc_latch, fire);

Parameters/Generics

Parameters/Generics:
severity_level
width
data_width
crc_width
crc_enable
crc_latch_enable
polynomial
standard_polynomial
initial_value
lsb_first

big_endian
reverse_endian
invert
combinational
property_type
msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: event-bounded assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of test_expr. Default: 1.

data_width Width of a data item in the message stream.
data_width = 0

Data item width is width bits (i.e., test_expr holds a complete
data item).

data_width = n × width (n > 0)
Data item width is n times the width of test_expr. Each data
item is the concatenation of the values of test_expr collected
over n valid cycles. For example, if test_expr has the values
2’b11, 2’b10, 2’b01 and 2’b10 over 4 consecutive valid
cycles, then the corresponding data item is 8’b11100110.

crc_width Degree of the CRC generator polynomial, width of the CRC
checksum and width of the crc port (if crc_enable is 1). Default:
5.

fire [OVL_FIRE_WIDTH-1:0]

test_expr[width-1:0]
initialize
valid
compare

crc_latch

ovl_crc
crc[width-1:0]

clock reset enable

OVL Checkers
ovl_crc

Accellera Standard OVL V2 LRM, 2.8.1 103
March 2014

crc_enable Which data port contains the input CRC value.
crc_enable = 0 (Default)

Test_expr contains the input CRC value. Crc_width cannot be
< width, or a CRC check violation occurs each compare
cycle. The crc port is ignored.

crc_enable = 1
The crc port contains the complete input CRC value.

crc_latch_enable Whether or not to latch the internal CRC register value.
crc_latch_enable = 0 (Default)

The current value of the CRC register is compared with the
input CRC value when compare asserts. The crc_latch port is
ignored.

crc_latch_enable = 1
The current value of the CRC register is latched if crc_latch
is TRUE. The latched CRC value is compared with the input
CRC value when compare asserts.

polynomial Normal representation of the CRC generator polynomial. Equal
to the concatenation of the polynomial coefficients in descending
order, skipping the high-order coefficient. For example, the
polynomial value representing:

is 4h'1021 (16'b0001 0000 0010 0001). Default: 5'b00101
()

standard_polynomial Polynomial to use if polynomial is 0:
1 — CRC-5-USB (2'h05)
2 — CRC-7 (2'h09)
3 — CRC-16-CCITT (4'h1021)
4 — CRC-32-IEEE802.3 (8'h04C11DB7)
5 — CRC-64-ISO (16'h000000000000001B)

initial_value Initial value of the internal CRC register.
initial_value = 0 (Default)

All 0’s, for example: 8'h00000000.
initial_value = 1

All 1’s, for example: 8'b11111111.
initial_value = 2

Alternating 10’s, for example: 8'b10101010.
initial_value = 3

Alternating 01’s, for example: 8'b01010101.

lsb_first Bit order in the CRC register.
lsb_first = 0 (Default)

MSB first bit order.
lsb_first = 1

LSB first bit order (i.e., reflected).

x
16

x
12

x
5

1+ + +

x
5

x
2

1+ +

Accellera Standard OVL V2 LRM, 2.8.1104

OVL Checkers
ovl_crc

March 2014

Ports

big_endian Byte order of a message data item.
big_endian = 0 (Default)

Little-endian byte order.
big_endian = 1

Big-endian byte order.

reverse_endian Byte order in the CRC value.
reverse_endian = 0 (Default)

Byte order is the same as the byte order of a message data
item (i.e., same as the big_endian parameter).

reverse_endian = 1
Byte order is the opposite of the byte order of a message data
item (i.e., inverse of big_endian parameter).

invert Sense of the input CRC value.
invert = 0 (Default)

Input CRC value is the CRC checksum.
invert = 1

Input CRC value is the inverted CRC checksum.

combinational Type of logic used to calculate CRC values.
combinational = 0 (Default)

CRC is calculated sequentially. The input CRC value is the
CRC checksum for the previous cycle.

combinational = 1
CRC is calculated combinationally. The input CRC value is
the CRC checksum for the current cycle.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the checker. The checker samples inputs on the
rising edge of the clock.

reset Synchronous reset signal indicating completed initialization.

OVL Checkers
ovl_crc

Accellera Standard OVL V2 LRM, 2.8.1 105
March 2014

Description
The ovl_crc checker ensures CRC checksums are calculated properly. The checker evaluates
the initialize signal at each rising edge of clock whenever enable is TRUE. If initialize is TRUE,
the checker restarts its CRC calculation algorithm, which initializes the internal CRC register to
the initial value specified by the initial_value parameter. After that, in the current cycle and in
each subsequent cycle, the checker checks the valid signal. If valid is TRUE and compare is
FALSE, the value of test_expr is taken as the next group of bits in the message stream. By
default, this group is shifted into the internal CRC register, displacing the group at the opposite
end and the internal CRC register is then updated with the CRC register value XORed with a
value from a lookup table. This internal CRC value is the calculated CRC checksum for the
message stream read from test_expr since initialization.

After initialization, the checker also checks the compare signal each cycle. By default:

• width Š crc_width

If compare and valid are both TRUE, the checker compares the value of test_expr with
the internal CRC value. If they do not match, a CRC check violation occurs.

enable Expression that indicates whether or not to check the inputs.

test_expr[width-1:0] Variable or expression containing the input data.

initialize Initialization signal. If TRUE, the checker loads its internal CRC
register with the initial value specified by the initial_value
parameter (before reading test_expr).

valid Data valid signal. If TRUE, the checker loads the next group of
bits from the message stream (or the input CRC value if compare
is TRUE and the crc_enable parameter is 0) from test_expr.

compare CRC check signal. If TRUE, the checker initiates a crc assertion
check in the current cycle.

crc[crc_width-1:0] Variable or expression containing the input CRC value if the
crc_enable parameter is 1. If crc_enable is 0, this port is ignored.

crc_latch Internal CRC register latch signal. If TRUE, the checker loads
and processes the test_expr value (if valid) and latches the value
of the internal CRC register for comparison with an input CRC
value (the next cycle compare asserts). This input is ignored
unless crc_latch_enable is 1.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

Accellera Standard OVL V2 LRM, 2.8.1106

OVL Checkers
ovl_crc

March 2014

• width < crc_width

If compare and valid are both TRUE, the checker compares the value of test_expr with
the first width bits of the internal CRC value. If they do not match, a CRC check
violation occurs. Then, each successive cycle in which compare and valid are both
TRUE, the checker compares the value of test_expr with the corresponding bits of the
internal CRC value. If they do not match, a CRC check violation occurs.

Because applications for CRC checking are so diverse, the ovl_crc checker contains a generic
CRC calculator adaptable to virtually any CRC scheme and implementation. The following
information is required to configure the calculator properly:

• Data stream handling

The algorithm shifts data into the CRC register and generates the internal CRC value
one data item at a time. By default, the test_expr port contains an entire data item.
However, the checker can support serial input and systems where data items are loaded
in multibit pieces. In these cases, specify the width of a data item with the data_width
parameter. The checker will accumulate the data item from test_expr over consecutive
valid cycles and on the last cycle (i.e., when the data item is complete) shift the data item
onto the CRC register.

• Algorithm controls

The standard variations on CRC computation are configured with checker parameters.
The CRC generator polynomial is specified by setting the polynomial parameter to its
normal representation. LSB first and big-endian data representation conventions are
selected by setting the lsb_first and big_endian parameters respectively to 1.

• CRC comparison

By default, the input CRC values are embedded in the data stream seen at the test_expr
port. Setting the crc_enable parameter to 1 configures the checker to take the input CRC
value from the crc port instead, so message data load and CRC compare operations can
overlap.

Input CRC transformations that invert the sense and flip the endian nature of CRC
values are controlled with the invert and reverse_endian parameters respectively.

• CRC computation timing

CRC comparison can be adjusted to handle the different time requirements for various
implementations.

By default, the current internal CRC register value is used when comparing input and
expected CRC values. Setting the crc_latch_enable parameter to 1 configures the
checker to latch the current internal CRC register value each cycle crc_latch is TRUE
(and then initialize the register). In the next cycle compare is TRUE, the input CRC
value is compared with the latched value (even as a new message is being accumulated
and a new CRC is being calculated).

OVL Checkers
ovl_crc

Accellera Standard OVL V2 LRM, 2.8.1 107
March 2014

By default, the checker assumes the input CRC is calculated sequentially, so the input
CRC value reflects the message accumulated up to the previous clock cycle. Setting the
combinational parameter to 1 configures the checker to assume the computation is
combinational. The input CRC value reflects the message accumulated up to the current
clock cycle.

Standard CRC polynomials:

Assertion Checks

Implicit X/Z Checks

Cover Points

Name crc_width Generator Polynomial polynomial

CRC-5-USB 5 2'h05

CRC-7 7 2'h09

CRC-16-CCITT 16 4'h1021

CRC-32-IEEE802.3 32 8'h04C11DB7

CRC-64-ISO 64 16'h00000000
000001B

CRC Input CRC value did not match the expected CRC value.

crc_enable = 0
Compare was TRUE, but the value of test_expr (or inverted
value if invert is 1) does not match the internal CRC value
calculated for the associated message stream.

crc_enable = 1
Compare was TRUE, but the value of crc (or inverted value if
invert is 1) does not match the internal CRC value calculated
for the associated message stream.

test_expr contains X or Z Expression contained X or Z bits.

valid contains X or Z Expression contained X or Z bits.

initialize contains X or Z Expression contained X or Z bits.

crc contains X or Z Expression contained X or Z bits.

crc_latch contains X or Z Expression contained X or Z bits.

compare contains X or Z Expression contained X or Z bits.

cover_values_checked SANITY — Number of cycles test_expr changed value.

x
5

x
2

1+ +

x
7

x
3

1+ +

x
16

x
12

x
5

1+ + +

x
32

x
26

x
23

x
22

x
16

x
12

x
11

+ + + + + +

x
10

x
8

x
7

x
5

x
4

x
2

x 1+ + + + + + +

x
64

x
4

x
3

x 1+ + + +

Accellera Standard OVL V2 LRM, 2.8.1108

OVL Checkers
ovl_crc

March 2014

Cover Groups

None

See also

Examples
Example 1

ovl_crc #(
.severity_level(‘OVL_ERROR),
.width(8),
.crc_width(4),
.crc_enable(1),
.polynomial(4’b0101),
.initial_value(0),
.property_type(‘OVL_ASSERT),
.msg(“OVL_VIOLATION : "))
.coverage_level(‘OVL_COVER_NONE),

CRC1(
.clock(clock),
.reset(1’b1),
.enable(1’b1),
.test_expr(data_in),
.initialize(start_crc),
.valid(1’b1),
.compare(1’b1),
.crc(crc_out),
.crc_latch(1’b0),

.fire(fire));

Checks that CRC checksums are calculated properly on all active edges of the clock. The CRC
generator polynomial is .

cover_crc_
computations_checked

STATISTIC — Number of cycles the internal CRC register was
updated.

cover_cycles_checked CORNER — Number of cycles CRC checksum comparisons
were performed.

none

x
4

x
2

1+ +

OVL Checkers
ovl_crc

Accellera Standard OVL V2 LRM, 2.8.1 109
March 2014

Example 2

ovl_crc #(
.severity_level(‘OVL_ERROR),
.width(8),
.crc_width(4),
.crc_enable(1),
.crc_latch_enable(1),
.polynomial(4’b0101),
.initial_value(0),

.property_type(‘OVL_ASSERT),
.msg(“OVL_VIOLATION : "),
.coverage_level(‘OVL_COVER_NONE))
CRC2(

.clock(clock),

.reset(1’b1),

.enable(1’b1),

.test_expr(data_in),

.initialize(start_crc),

.valid(1’b1),

.compare(!sel_data),

.crc(crc_out),

.crc_latch(data_block_rdy),
.fire(fire));

Checks that CRC checksums (latched when data_block_rdy asserts) are equal to the input CRC
checksums on crc_out when sel_data deasserts. The CRC generator polynomial is .

Example 3

ovl_crc #(
.severity_level(‘OVL_ERROR),
.width(32),
.crc_width(32),
.polynomial(8’h04C11DB7),
.initial_value(1)
.reverse_endian(1),
.property_type(‘OVL_ASSERT),
.msg(“OVL_VIOLATION : "),
.coverage_level(‘OVL_COVER_NONE))
CRC3(

.clock(clock),

.reset(1’b1),

.enable(1’b1),

.test_expr(data_in),

.initialize(start_crc),

.valid(data_in_valid),

.compare(crc_valid),

.crc(32’b0),

.crc_latch(1’b0),
.fire(fire));

Checks that reverse-endian transformations of the CRC checksums equal the values on data_in
when data_in_valid and crc_valid both assert. The CRC generator polynomial is:

x
4

x
2

1+ +

x
32

x
26

x
23

x
22

x
16

x
12

x
11

x
10

x
8

x
7

x
5

x
4

x
2

x 1+ + + + + + + + + + + + + +

Accellera Standard OVL V2 LRM, 2.8.1110

OVL Checkers
ovl_crc

March 2014

Example 4

ovl_crc #(
.severity_level(‘OVL_ERROR),
.width(7),
.crc_width(7),
.crc_latch_enable(1),
.polynomial(7’b0001001),
.initial_value(1),
.big_endian(1),
.reverse_endian(1),
.property_type(‘OVL_ASSERT),
.msg(“OVL_VIOLATION : "),
.coverage_level(‘OVL_COVER_NONE))
CRC4(

.clock(clock),

.reset(1’b1),

.enable(1’b1),

.test_expr(data_in),

.initialize(start_crc),

.valid(data_in_valid),

.compare(sel_crc),

.crc(7’b0),

.crc_latch(data_block_rdy),
.fire(fire));

Checks that CRC checksums (latched when data_block_rdy asserts) are equal to the input CRC
checksums on data_in when sel_crc asserts. Data values of data_in are big endian and CRC
values of data_in are little endian. The CRC generator polynomial is .

Example 5

ovl_crc #(
.severity_level(‘OVL_ERROR),
.width(4),
.data_width(16),
.crc_width(16),
.polynomial(16’h1021),
.initial_value(1),
.property_type(‘OVL_ASSERT),
.msg(“OVL_VIOLATION : "),
.coverage_level(‘OVL_COVER_NONE))
CRC5(

.clock(clock),

.reset(1’b1),

.enable(1’b1),

.test_expr(data_in),

.initialize(start_crc),

.valid(data_in_valid),

.compare(compare),

.crc(16’b0),

.crc_latch(1’b0),
.fire(fire));

x
7

x
3

1+ +

OVL Checkers
ovl_crc

Accellera Standard OVL V2 LRM, 2.8.1 111
March 2014

Checks that the associated bits of CRC checksums equal the values on data_in when
data_in_valid and compare both assert. Each 16-bit data item is composed of 4-bit groups
accumulated over 4 consecutive valid data cycles. Each cycle a data item is complete, its value
is shifted onto the CRC register and the register is updated with the internal CRC value. The
input CRC value is also accumulated from data_in in consecutive valid data cycles (i.e., when
data_in_valid is TRUE) if compare is TRUE. However, since the internal CRC value is known,
a CRC check violation occurs each cycle the current group of data_in bits does not match the
corresponding bits in the internal CRC value. The CRC generator polynomial is

.

Example 6

ovl_crc #(
.severity_level(‘OVL_ERROR),
.width(112),
.crc_width(16),
.crc_enable(1),
.polynomial(16’h1021),
.initial_value(3),
.combinational(1),
.property_type(‘OVL_ASSERT),
.msg(“OVL_VIOLATION : "),
.coverage_level(‘OVL_COVER_NONE))
CRC5(

.clock(clock),

.reset(1’b1),

.enable(1’b1),

.test_expr(data_in[127:16),

.initialize(valid),

.valid(valid),

.compare(valid),

.crc(data_in[15:0]),

.crc_latch(1’b0),
.fire(fire));

Checks that every cycle valid is TRUE, data_in[15:0] equals the CRC checksum for the current
value of data_in[127:16] with an initial value of 4’h5555. The CRC generator polynomial is

.

x
16

x
12

x
5

1+ + +

x
16

x
12

x
5

1+ + +

Accellera Standard OVL V2 LRM, 2.8.1112

OVL Checkers
ovl_crc

March 2014

Example 7

ovl_crc #(
.severity_level(‘OVL_ERROR),
.width(128),
.crc_width(16),
.crc_enable(1),
.polynomial(16’h1021),
.property_type(‘OVL_ASSERT),
.msg(“OVL_VIOLATION : "),
.coverage_level(‘OVL_COVER_NONE))
CRC5(

.clock(clock),

.reset(1’b1),

.enable(1’b1),

.test_expr(data_in),

.initialize(1’b1),

.valid(1’b1),

.compare(1’b1),

.crc(crc),

.crc_latch(1’b0),
.fire(fire));

Checks that every active clock cycle, the value of crc equals the CRC checksum of the value of
data_in sampled in the previous cycle. The CRC generator polynomial is .x

16
x

12
x

5
1+ + +

OVL Checkers
ovl_cycle_sequence

Accellera Standard OVL V2 LRM, 2.8.1 113
March 2014

ovl_cycle_sequence
Checks that if a specified necessary condition occurs, it is followed by a specified sequence of
events.

Syntax
ovl_cycle_sequence

[#(severity_level, num_cks, necessary_condition, property_type,
msg, coverage_level, clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, event_sequence, fire);

Parameters/Generics

Parameters/Generics:
severity_level
num_cks
necessary_condition
property_type

msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: n-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

num_cks Width of the event_sequence argument. This parameter must not
be less than 2. Default: 2.

necessary_condition Method for determining the necessary condition that initiates the
sequence check and whether or not to pipeline checking. Values
are: OVL_TRIGGER_ON_MOST_PIPE (default),
OVL_TRIGGER_ON_FIRST_PIPE and
OVL_TRIGGER_ON_FIRST_NOPIPE.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

ovl_cycle_sequence

fire[OVL_FIRE_WIDTH-1:0]

event_sequence[num_cks-1:0]

clock reset enable

Accellera Standard OVL V2 LRM, 2.8.1114

OVL Checkers
ovl_cycle_sequence

March 2014

Ports

Description
The ovl_cycle_sequence assertion checker checks the expression event_sequence at the active
edge of clock to identify whether or not the bits in event_sequence assert sequentially on
successive active edges of clock. For example, the following series of 4-bit values (where b is
any bit value) is a valid sequence:

1bbb —> b1bb —> bb1b —> bbb1

This series corresponds to the following series of events on successive active edges of clock:

The checker also has the ability to pipeline its analysis. Here, one or more new sequences can be
initiated and recognized while a sequence is in progress. For example, the following series of 4-
bit values (where b is any bit value) constitutes two overlapping valid sequences:

1bbb —> b1bb —> 1b1b —> b1b1 —> bb1b —> bbb1

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

event_sequence
[num_cks-1:0]

Expression that is a concatenation where each bit represents an
event.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

cycle 1 event_sequence[3] == 1

cycle 2 event_sequence[2] == 1

cycle 3 event_sequence[1] == 1

cycle 4 event_sequence[0] == 1

OVL Checkers
ovl_cycle_sequence

Accellera Standard OVL V2 LRM, 2.8.1 115
March 2014

This series corresponds to the following sequences of events on successive active edges of
clock:

When the checker determines that a specified necessary condition has occurred, it subsequently
verifies that a specified event or event sequence occurs and if not, the assertion fails.

The method used to determine what constitutes the necessary condition and the resulting trigger
event or event sequence is controlled by the necessary_condition parameter. The checker has
the following actions:

• OVL_TRIGGER_ON_MOST_PIPE

The necessary condition is that the bits:

event_sequence [num_cks -1], . . . ,event_sequence [1]

are sampled equal to 1 sequentially on successive active edges of clock. When this
condition occurs, the checker verifies that the value of event_sequence[0] is 1 at the next
active edge of clock. If not, the assertion fails.

The checking is pipelined, which means that if event_sequence[num_cks -1] is sampled
equal to 1 while a sequence (including event_sequence[0]) is in progress and
subsequently the necessary condition is satisfied, the check of event_sequence[0] is
performed.

• OVL_TRIGGER_ON_FIRST_PIPE

The necessary condition is that the event_sequence [num_cks -1] bit is sampled equal to
1 on an active edge of clock. When this condition occurs, the checker verifies that the
bits:

event_sequence [num_cks -2], . . . ,event_sequence [0]

are sampled equal to 1 sequentially on successive active edges of clock. If not, the
assertion fails and the checker cancels the current check of subsequent events in the
sequence.

The checking is pipelined, which means that if event_sequence[num_cks -1] is sampled
equal to 1 while a check is in progress, an additional check is initiated.

cycle 1 event_sequence[3] == 1

cycle 2 event_sequence[2] == 1

cycle 3 event_sequence[1] == 1 event_sequence[3] == 1

cycle 4 event_sequence[0] == 1 event_sequence[2] == 1

cycle 5 event_sequence[1] == 1

cycle 6 event_sequence[0] == 1

Accellera Standard OVL V2 LRM, 2.8.1116

OVL Checkers
ovl_cycle_sequence

March 2014

• OVL_TRIGGER_ON_FIRST_NOPIPE

The necessary condition is that the event_sequence [num_cks -1] bit is sampled equal to
1 on an active edge of clock. When this condition occurs, the checker verifies that the
bits:

event_sequence [num_cks -2], . . . ,event_sequence [0]

are sampled equal to 1 sequentially on successive active edges of clock. If not, the
assertion fails and the checker cancels the current check of subsequent events in the
sequence.

The checking is not pipelined, which means that if event_sequence[num_cks -1] is
sampled equal to 1 while a check is in progress, it is ignored, even if the check is
verifying the last bit of the sequence (event_sequence [0]).

Assertion Checks

Implicit X/Z Checks

Cover Points

Cover Groups

none

CYCLE_SEQUENCE The necessary condition occurred, but it was not followed by the
event or event sequence.

illegal num_cks
parameter

The num_cks parameter is less than 2.

First event in the sequence
contains X or Z

Value of the first event in the sequence was X or Z.

Subsequent events in the
sequence contain X or Z

Value of a subsequent event in the sequence was X or Z.

First num_cks-1 events in
the sequence contain X or
Z

Values of the events in the sequence (except the last event) were
X or Z.

Last event in the sequence
contains X or Z

Value of the last event in the sequence was X or Z.

cover_sequence_trigger BASIC — The trigger sequence occurred.

OVL Checkers
ovl_cycle_sequence

Accellera Standard OVL V2 LRM, 2.8.1 117
March 2014

See also

Examples
Example 1

Checks that a ‘WR, ‘WAIT sequence in consecutive cycles is followed by a ‘DONE or ‘WR.
The sequence checking is pipelined.

ovl_change ovl_unchange

ovl_cycle_sequence #(

‘OVL_ERROR,
3,
‘OVL_TRIGGER_ON_MOST_PIPE,
‘OVL_ASSERT,
“Error: invalid WR sequence”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// num_cks
// necessary_condition
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_write_sequence (

clock,
reset,
enable,
{ r_opcode ==‘WR,
r_opcode ==‘WAIT,
(r_opcode == ‘WR) ||
(r_opcode ==‘DONE)},
fire_valid_write_sequence);

// clock
// reset
// enable
// event_sequence

// fire

clock

reset

CYCLE_SEQUENCE Error: invalid WR sequence

r_opcode X ‘WR ‘WAIT‘DONE ‘IDLE ‘IDLE‘WR ‘WAIT ‘WR ‘WAIT

Accellera Standard OVL V2 LRM, 2.8.1118

OVL Checkers
ovl_cycle_sequence

March 2014

Example 2

Checks that a ‘WR is followed by a ‘WAIT or another ‘WR, which is then followed by a
‘WAIT or a ‘DONE (in consecutive cycles). The sequence checking is pipelined: a new ‘WR
during a sequence check initiates an additional check.

ovl_cycle_sequence #(

‘OVL_ERROR,
3,
‘OVL_TRIGGER_ON_FIRST_PIPE,
‘OVL_ASSERT,
“Error: invalid WR sequence”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// num_cks
// necessary_condition
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_write_sequence (

clock,
reset,
enable,
{ r_opcode == ‘WR,
(r_opcode == ‘WAIT) ||
(r_opcode == ‘WR),
(r_opcode == ‘WAIT) ||
(r_opcode == ‘DONE)},
fire_valid_write_sequence);

// clock
// reset
// enable
// event_sequence

// fire

clock

reset

CYCLE_SEQUENCE Error: invalid WR sequence

r_opcode X ‘WAIT‘DONE ‘WR ‘DONE‘WR ‘WAIT ‘DONE ‘WR

OVL Checkers
ovl_cycle_sequence

Accellera Standard OVL V2 LRM, 2.8.1 119
March 2014

Example 3

Checks that a ‘WR is followed by a ‘WAIT or another ‘WR, which is then followed by a
‘DONE (in consecutive cycles). The sequence checking is not pipelined: a new ‘WR during a
sequence check does not initiate an additional check.

ovl_cycle_sequence #(

‘OVL_ERROR,
3,
‘OVL_TRIGGER_ON_FIRST_NOPIPE,
‘OVL_ASSERT,
“Error: invalid WR sequence”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// num_cks
// necessary_condition
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_write_sequence (

clock,
reset,
enable,
{ r_opcode == ‘WR,
(r_opcode == ‘WAIT) ||
(r_opcode == ‘WR),
(r_opcode == ‘DONE)},
fire_valid_write_sequence);

// clock
// reset
// enable
// event_sequence

// fire

clock

reset

r_opcode X ‘DONE‘DONE ‘WR ‘IDLE‘WR ‘WAIT ‘WR ‘DONE

CYCLE_SEQUENCE Error: invalid WR sequence

Accellera Standard OVL V2 LRM, 2.8.1120

OVL Checkers
ovl_decrement

March 2014

ovl_decrement
Checks that the value of an expression changes only by the specified decrement value.

Syntax
ovl_decrement

[#(severity_level, width, value, property_type, msg, coverage_level,
clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, test_expr, fire);

Parameters/Generics

Ports

Parameters/Generics:
severity_level
width
value
property_type

msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: 2-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of the test_expr argument. Default: 1.

value Decrement value for test_expr. Default: 1.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

ovl_decrement

fire[OVL_FIRE_WIDTH-1:0]

test_expr[width-1:0]

clock reset enable

OVL Checkers
ovl_decrement

Accellera Standard OVL V2 LRM, 2.8.1 121
March 2014

Description
The ovl_decrement assertion checker checks the expression test_expr at each active edge of
clock to determine if its value has changed from its value at the previous active edge of clock. If
so, the checker verifies that the new value equals the previous value decremented by value. The
checker allows the value of test_expr to wrap, if the total change equals the decrement value.
For example, if width is 5 and value is 4, then the following change in test_expr is valid:

5’b00010 —> 5’b11110

The checker is useful for ensuring proper changes in structures such as counters and finite-state
machines. For example, the checker is useful for circular queue structures with address counters
that can wrap. Do not use this checker for variables or expressions that can increment. Instead
consider using the ovl_delta checker.

Assertion Checks

Implicit X/Z Checks

Cover Points

Cover Groups

none

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

test_expr[width-1:0] Expression that should decrement by value whenever its value
changes from the active edge of clock to the next active edge of
clock.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

DECREMENT Expression evaluated to a value that is not its previous value
decremented by value.

test_expr contains X or Z Expression value contained X or Z bits.

cover_test_expr_change BASIC — Expression changed value.

Accellera Standard OVL V2 LRM, 2.8.1122

OVL Checkers
ovl_decrement

March 2014

Notes
1. The assertion check compares the current value of test_expr with its previous value.

Therefore, checking does not start until the second rising edge of clock after reset
deasserts.

See also

Examples

Checks that the programmable counter’s count variable only decrements by 1. If count wraps,
the assertion fails, because the change is not a binary decrement.

ovl_delta
ovl_increment

ovl_no_underflow

ovl_decrement #(

‘OVL_ERROR,
4,
1,
‘OVL_ASSERT,
“Error: invalid binary decrement”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// width
// value
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_count (

clock,
reset,
enable,
count,
fire_valid_count);

// clock
// reset
// enable
// test_expr
// fire

clock

reset

count 1001 1000 0111 0110 0101 0011 0001 0000 10010100 0010

DECREMENT Error: invalid binary decrement

OVL Checkers
ovl_delta

Accellera Standard OVL V2 LRM, 2.8.1 123
March 2014

ovl_delta
Checks that the value of an expression changes only by a value in the specified range.

Syntax
ovl_delta

[#(severity_level, width, min, max, property_type, msg,
coverage_level, clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, test_expr, fire);

Parameters/Generics

Parameters/Generics:
severity_level
width
min
max
property_type

msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: 2-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of the test_expr argument. Default: 1.

min Minimum delta value allowed for test_expr. Default: 1.

max Maximum delta value allowed for test_expr. Default: 1.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

ovl_delta

fire[OVL_FIRE_WIDTH-1:0]

test_expr[width-1:0]

clock reset enable

Accellera Standard OVL V2 LRM, 2.8.1124

OVL Checkers
ovl_delta

March 2014

Ports

Description
The ovl_delta assertion checker checks the expression test_expr at each active edge of clock to
determine if its value has changed from its value at the previous active edge of clock. If so, the
checker verifies that the difference between the new value and the previous value (i.e., the delta
value) is in the range from min to max, inclusive. If the delta value is less than min or greater
than max, the assertion fails.

The checker is useful for ensuring proper changes in control structures such as up-down
counters. For these structures, ovl_delta can check for underflow and overflow. In datapath and

OVL Checkers
ovl_delta

Accellera Standard OVL V2 LRM, 2.8.1 125
March 2014

none

Errors

The parameters/generics min and max must be specified such that min is less than or equal to
max. Otherwise, the assertion fails on each tested clock cycle.

Notes
1. The assertion check compares the current value of test_expr with its previous value.

Therefore, checking does not start until the second rising edge of clock after reset
deasserts.

2. The assertion check allows the value of test_expr to wrap. The overflow or underflow
amount is included in the delta value calculation.

See also

Examples

ovl_decrement
ovl_increment
ovl_no_overflow

ovl_no_underflow
ovl_range

ovl_delta #(

‘OVL_ERROR,
16,
0,
8,
‘OVL_ASSERT,
“Error: y values not smooth”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// width
// min
// max
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_smooth (

clock,
reset,
enable,
y,
fire_valid_smooth);

// clock
// reset
// enable
// test_expr
// fire

Accellera Standard OVL V2 LRM, 2.8.1126

OVL Checkers
ovl_delta

March 2014

Checks that the y output only changes by a maximum of 8 units each cycle (min is 0).
clock

reset

y 1240 1244 1248 1256 1260 1272 1276 1278 12961266 1274

DELTA Error: y values not smooth

OVL Checkers
ovl_even_parity

Accellera Standard OVL V2 LRM, 2.8.1 127
March 2014

ovl_even_parity
Checks that the value of an expression has even parity.

Syntax
ovl_even_parity

[#(severity_level, width, property_type, msg, coverage_level,
clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, test_expr, fire);

Parameters/Generics

Ports

Parameters/Generics:
severity_level
width
property_type
msg

coverage_level
clock_edge
reset_polarity
gating_type

Class: 1-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of the test_expr argument. Default: 1.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

ovl_even_parity

fire[OVL_FIRE_WIDTH-1:0]

test_expr[width-1:0]

clock reset enable

Accellera Standard OVL V2 LRM, 2.8.1128

OVL Checkers
ovl_even_parity

March 2014

Description
The ovl_even_parity assertion checker checks the expression test_expr at each active edge of
clock to verify the expression evaluates to a value that has even parity. A value has even parity
if it is 0 or if the number of bits set to 1 is even.

The checker is useful for verifying control circuits, for example, it can be used to verify a finite-
state machine with error detection. In a datapath circuit the checker can perform parity error
checking of address and data buses.

Assertion Checks

Implicit X/Z Checks

Cover Points

Cover Groups

none

See also

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

test_expr[width-1:0] Expression that should evaluate to a value with even parity on the
active clock edge.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

EVEN_PARITY Expression evaluated to a value whose parity is not even.

test_expr contains X or Z Expression value contained X or Z bits.

cover_test_expr_change SANITY — Expression has changed value.

ovl_odd_parity

OVL Checkers
ovl_even_parity

Accellera Standard OVL V2 LRM, 2.8.1 129
March 2014

Examples

Checks that data has even parity at each rising edge of clock.

ovl_even_parity #(

‘OVL_ERROR,
8,
‘OVL_ASSERT,
“Error: data has odd parity”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// width
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_data_even_parity (

clock,
reset,
enable,
data,
fire_valid_data_even_parity);

// clock
// reset
// enable
// test_expr
// fire

clock

reset

data

EVEN_PARITY

A

Error: data has odd parity

5 0 C 7 C 3 6 0

Accellera Standard OVL V2 LRM, 2.8.1130

OVL Checkers
ovl_fifo

March 2014

ovl_fifo
Checks the data integrity of a FIFO and checks that the FIFO does not overflow or underflow.

Syntax
ovl_fifo

[#(severity_level, depth, width, high_water_mark, enq_latency,
deq_latency, value_check, pass_thru, registered, preload_count,
property_type, msg, coverage_level, clock_edge, reset_polarity,
gating_type)]

instance_name (clock, reset, enable, enq, enq_data, deq, deq_data,
full, empty, preload, fire);

Parameters/Generics

Parameters/Generics:
severity_level
width
depth
pass_thru
registered
enq_latency
deq_latency
preload_count

high_water_mark
value_check
property_type
msg
coverage_level
clock_edge
reset_polarity
gating_type

*if preload_count = 0:
preload is width bits wide

Class: event-bounded assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of a data item. Default: 1.

depth FIFO depth. The depth must be > 0. Default: 2.

pass_thru How the FIFO handles a dequeue and enqueue in the same cycle
if the FIFO is empty.
pass_thru = 0 (Default)

No pass-through mode. Simultaneous dequeue/enqueue of an
empty FIFO is an dequeue violation.

pass_thru = 1
Pass-through mode. Enqueue happens before the dequeue.
Simultaneous enqueue/dequeue of an empty FIFO is not a
dequeue violation.

fire [OVL_FIRE_WIDTH-1:0]

enq
deq
full
empty

deq_data[width-1:0]

ovl_fifo
enq_data[width-1:0]

preload[preload_count*width-1:0]*
clock reset enable

OVL Checkers
ovl_fifo

Accellera Standard OVL V2 LRM, 2.8.1 131
March 2014

registered How the FIFO handles an enqueue and dequeue in the same cycle
if the FIFO is full.
registered = 0 (Default)

No registered mode. Simultaneous enqueue/dequeue of a full
FIFO is an enqueue violation.

registered = 1
Registered mode. Dequeue happens before the enqueue.
Simultaneous enqueue/dequeue of a full FIFO is not an
enqueue violation.

enq_latency Latency for enqueue data.
enq_latency = 0 (Default)

Checks and coverage assume enq_data is valid and the
enqueue operation is performed in the same cycle enq asserts.

enq_latency > 0
Checks and coverage assume enq_data is valid and the
enqueue operation is performed enq_latency cycles after enq
asserts.

deq_latency Latency for dequeued data.
deq_latency = 0 (Default)

Checks and coverage assume deq_data is valid and the
dequeue operation is performed in the same cycle deq asserts.

deq_latency > 0
Checks and coverage assume deq_data is valid and the
dequeue operation is performed deq_latency cycles after deq
asserts.

preload_count Number of items to preload the FIFO on reset. The preload port
is a concatenated list of items to be preloaded into the FIFO.
Default: 0 (FIFO empty on reset).

high_water_mark FIFO high-water mark. Must be < depth. A value of 0 disables
the high-water mark cover point. Default: 0.

value_check Whether or not to perform value checks.
value_check = 0 (Default)

Turns off the value check.
value_check = 1

Turns on the value check.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

Accellera Standard OVL V2 LRM, 2.8.1132

OVL Checkers
ovl_fifo

March 2014

Ports

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

enq FIFO enqueue input. When enq asserts, the FIFO performs an
enqueue operation. A data item is enqueued onto the FIFO and
the FIFO counter increments by 1. If enq_latency is 0, the
enqueue is performed in the same cycle enq asserts. Otherwise,
the enqueue and counter increment occur enq_latency cycles
later.

enq_data[width-1:0] Enqueue data input to the FIFO. Contains the data item to
enqueue in that cycle (if enq_latency = 0) or to enqueue in the
cycle enq_latency cycles later (if enq_latency > 0).

deq FIFO dequeue input. When deq asserts, the FIFO performs a
dequeue operation. A data item is dequeued from the FIFO and
the FIFO counter decrements by 1. If deq_latency is 0, the
dequeue is performed in the same cycle deq asserts. Otherwise,
the dequeue and counter decrement occur deq_latency cycles
later.

deq_data[width-1:0] Dequeue data output from the FIFO. Contains the dequeued data
item in that cycle (if deq_latency = 0) or in the cycle enq_latency
cycles later (if enq_latency > 0).

full Output status flag from the FIFO.
full = 0

FIFO not full.
full = 1

FIFO full.

empty Output status flag from the FIFO.
empty = 0

FIFO not empty.
empty = 1

FIFO empty.

OVL Checkers
ovl_fifo

Accellera Standard OVL V2 LRM, 2.8.1 133
March 2014

Description
The ovl_fifo assertion checker checks that a FIFO functions legally. A FIFO is a memory
structure that stores and retrieves data items based on a first-in first-out queueing protocol. The
FIFO has configured properties specified as parameters/generics to the ovl_fifo checker: width
of the data items (width), capacity of the FIFO (depth), and the high-water mark that identifies
the point at which the FIFO is almost full (high_water_mark). Control and data signals to and
from the FIFO are connected to the ovl_fifo checker.

The checker checks enq and deq at the active edge of clock each cycle the checker is active. If
enq is TRUE, the FIFO is enqueuing a data item onto the FIFO. If deq is TRUE, the FIFO is in
the process of dequeuing a data item. Both enqueue and dequeue operations can each take more
than one cycle. If the enq_latency parameter is defined > 0, then enq_data is ready enq_latency
clock cycles after the enq signal asserts. Similarly, if the deq_latency parameter is defined > 0,
then deq_data is ready deq_latency clock cycles after the deq signal asserts. All assertion
checks and coverage are based on enqueue/dequeue data after the latency periods.

The checker checks that the FIFO does not enqueue an item when it is supposed to be full
(enqueue check) and the FIFO does not dequeue an item when it is supposed to be empty
(dequeue check). The checker also checks that the FIFO’s full and empty status flags operate
correctly (full and empty checks). The checker also can verify the data integrity of dequeued
FIFO data (value check).

The checker also can be configured to handle other FIFO characteristics such as preloading
items on reset and allowing pass-through operations and registered enqueue/dequeues.

preload
[preload_count*width-1
:0]

Concatenated preload data to enqueue on reset.
preload_count = 0
No preload of the FIFO is assumed. The width of preload should
be width, however no values from preload are used. The FIFO is
assumed to be empty on reset.
preload_count > 0
Checker assumes the value of preload is a concatenated list of
items that were all enqueued on the FIFO on reset (or simulation
start). The width of preload should be preload_count * width
(preload items are the same width). Preload values are enqueued
from the low order item to the high order item.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

Accellera Standard OVL V2 LRM, 2.8.1134

OVL Checkers
ovl_fifo

March 2014

Assertion Checks

ENQUEUE Enqueue occurred that would overflow the FIFO.
registered = 0

Enq was TRUE, but enq_latency cycles later, FIFO contained
depth items.

registered = 1
Enq was TRUE, but enq_latency cycles later, FIFO contained
depth items and no item was to be dequeued that cycle.

DEQUEUE Dequeue occurred that would underflow the FIFO.
pass_thru = 0

Deq was TRUE, but deq_latency cycles later, FIFO contained
no items.

pass_thru = 1
Deq was TRUE, but enq_latency cycles later, FIFO contained
no items and no item was to be enqueued that cycle.

FULL FIFO ‘full’ signal asserted or deasserted in the
wrong cycle.

FIFO contained fewer than depth items but full was TRUE or
FIFO contained depth items but full was FALSE.

EMPTY FIFO ‘empty’ signal asserted or deasserted in the
wrong cycle.

FIFO contained one or more items but empty was TRUE or
FIFO contained no items but empty was FALSE.

VALUE Dequeued FIFO value did not equal the corresponding
enqueued value.
deq_latency = 0

Deq was TRUE, but deq_data did not equal the
corresponding enqueued item.

deq_latency > 0
Deq was TRUE, but deq_latency cycles later deq_data did
not equal the corresponding enqueued item.

This check automatically turns off if an enqueue or dequeue
check violation occurs since it is no longer possible to correspond
enqueued with dequeued values. The check turns back on when
the checker resets.

Accellera Standard OVL V2 LRM, 2.8.1136

OVL Checkers
ovl_fifo

March 2014

See also

ovl_fifo_index
ovl_no_overflow

ovl_no_underflow

OVL Checkers
ovl_fifo_index

Accellera Standard OVL V2 LRM, 2.8.1 137
March 2014

ovl_fifo_index
Checks that a FIFO-type structure never overflows or underflows. This checker can be
configured to support multiple pushes (FIFO writes) and pops (FIFO reads) during the same
clock cycle.

Syntax
ovl_fifo_index

[#(severity_level, depth, push_width, pop_width,
simultaneous_push_pop, property_type, msg, coverage_level,
clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, push, pop, fire);

Parameters/Generics

Parameters/Generics:
severity_level
depth
push_width
pop_width
simultaneous_push_pop

property_type
msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: n-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

depth Maximum number of elements in the FIFO or queue structure.
This parameter must be > 0. Default: 1.

push_width Width of the push argument. Default: 1.

pop_width Width of the pop argument. Default: 1.

simultaneous_push_pop Whether or not to allow simultaneous push/pop operations in the
same clock cycle. When set to 0, if push and pop operations
occur in the same cycle, the assertion fails. Default: 1
(simultaneous push/pop operations are allowed).

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

ovl_fifo_index

fire[OVL_FIRE_WIDTH-1:0]

push[push_width-1:0]

pop[pop_width-1:0]

clock reset enable

Accellera Standard OVL V2 LRM, 2.8.1138

OVL Checkers
ovl_fifo_index

March 2014

Ports

Description
The ovl_fifo_index assertion checker tracks the numbers of pushes (writes) and pops (reads)
that occur for a FIFO or queue memory structure. This checker does permit simultaneous
pushes/pops on the queue within the same clock cycle. It checks that the FIFO never overflows
(i.e., too many pushes occur without enough pops) and never underflows (i.e., too many pops
occur without enough pushes). This checker is more complex than the ovl_no_overflow and
ovl_no_underflow checkers, which check only the boundary conditions (overflow and
underflow respectively).

Assertion Checks

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

push[push_width-1:0] Expression that indicates the number of push operations that will
occur during the current cycle.

pop[pop_width-1:0] Expression that indicates the number of pop operations that will
occur during the current cycle.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

OVERLOW Push operation overflowed the FIFO.

UNDERFLOW Pop operation underflowed the FIFO.

ILLEGAL PUSH AND POP Push and pop operations performed in the same clock cycle, but
the simultaneous_push_pop parameter is set to 0.

OVL Checkers
ovl_fifo_index

Accellera Standard OVL V2 LRM, 2.8.1 139
March 2014

Implicit X/Z Checks

Cover Points

Cover Groups

none

Errors

Notes
1. The checker checks the values of the push and pop expressions. By default, (i.e.,

simultaneous_push_pop is 1), “simultaneous” push/pop operations are allowed. In this
case, the checker assumes the design properly handles simultaneous push/pop
operations, so it only checks that the FIFO buffer index at the end of the cycle has not
overflowed or underflowed. The assertion cannot ensure the FIFO buffer index does not
overflow between a push and pop performed in the same cycle. Similarly, the assertion
cannot ensure the FIFO buffer index does not underflow between a pop and push
performed in the same cycle.

See also

push contains X or Z Push expression value contained X or Z bits.

pop contains X or Z Pop expression value contained X or Z bits.

cover_fifo_push BASIC — Push operation occurred.

cover_fifo_pop BASIC — Pop operation occurred.

cover_fifo_full CORNER — FIFO was full.

cover_fifo_empty CORNER — FIFO was empty.

cover_fifo_
simultaneous_push_pop

CORNER — Push and pop operations occurred in the same clock
cycle.

Depth parameter value
must be > 0

Depth parameter is set to 0.

ovl_fifo
ovl_no_overflow

ovl_no_underflow

Accellera Standard OVL V2 LRM, 2.8.1140

OVL Checkers
ovl_fifo_index

March 2014

Examples
Example 1

Checks that an 8-element FIFO never overflows or underflows. Only single pushes and pops
can occur in a clock cycle (push_width and pop_width values are 1). A push and pop operation
in the same clock cycle is allowed (value of simultaneous_push_pop is 1).

ovl_fifo_index #(

‘OVL_ERROR,
8,
1,
1,
1,
‘OVL_ASSERT,
“Error”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// depth
// push_width
// pop_width
// simultaneous_push_pop
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

no_over_underflow (

clock,
reset,
enable,
push,
pop,
fire_fifo_no_over_underflow);

// clock
// reset
// enable
// push
// pop
// fire

clock

reset

push

pop

count 0 1 2 3 4 5 6 7 8 9

OVERFLOW Error

OVL Checkers
ovl_fifo_index

Accellera Standard OVL V2 LRM, 2.8.1 141
March 2014

Example 2

Checks that an 8-element FIFO never overflows or underflows and that in no cycle do both push
and pop operations occur.

ovl_fifo_index #(

‘OVL_ERROR,
8,
1,
1,
0,
‘OVL_ASSERT,
“violation”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// depth
// push_width
// pop_width
// simultaneous_push_pop
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

no_over_underflow (

clock,
reset,
enable,
push,
pop,
fire_fifo_no_over_underflow);

// clock
// reset
// enable
// push
// pop
// fire

clock

reset

push

pop

count 0 1 2 3 3 4 6 7 6

ILLEGAL PUSH AND POP Error

54

Accellera Standard OVL V2 LRM, 2.8.1142

OVL Checkers
ovl_frame

March 2014

ovl_frame
Checks that when a specified start event is TRUE, then an expression must not evaluate TRUE
before a minimum number of clock cycles and must transition to TRUE no later than a
maximum number of clock cycles.

Syntax
ovl_frame

[#(severity_level, min_cks, max_cks, action_on_new_start,
property_type, msg, coverage_level, clock_edge, reset_polarity,
gating_type)]

instance_name (clock, reset, enable, start_event, test_expr, fire);

Parameters/Generics

Parameters/Generics:
severity_level
min_cks
max_cks
action_on_new_start
property_type

msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: n-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

min_cks Number of cycles after the start event that test_expr must not
evaluate to TRUE. The special case where min_cks is 0 turns off
minimum checking (i.e., test_expr can be TRUE in the cycle
following the start event). Default: 0.

max_cks Number of cycles after the start event that during which test_expr
must transition to TRUE. The special case where max_cks is 0
turns off maximum checking (i.e., test_expr does not need to
transition to TRUE). Default: 0.

action_on_new_start Method for handling a new start event that occurs while a check
is pending. Values are: OVL_IGNORE_NEW_START,
OVL_RESET_ON_NEW_START and
OVL_ERROR_ON_NEW_START. Default:
OVL_IGNORE_NEW_START.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

ovl_frame

fire[OVL_FIRE_WIDTH-1:0]

start_event

test_expr

clock reset enable

OVL Checkers
ovl_frame

Accellera Standard OVL V2 LRM, 2.8.1 143
March 2014

Ports

Description
The ovl_frame assertion checker checks for a start event at each active edge of clock. A start
event occurs if start_event is a rising signal (i.e., has transitioned from FALSE to TRUE, either
at the clock edge or in the previous cycle). A start event also occurs if start_event is TRUE at
the active clock edge after a checker reset.

When a new start event occurs, the checker performs the following steps:

1. A frame violation occurs if test_expr is not TRUE at the start event.

2. Unless it is disabled by setting min_cks to 0, a minimum check is initiated. The check
evaluates test_expr at each subsequent active edge of clock for the next min_cks cycles.
However, if a sampled value of test_expr is TRUE, the minimum check fails and the
checker returns to the state of waiting for a start event.

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

start_event Expression that (along with action_on_new_start) identifies
when to initiate checking of test_expr.

test_expr Expression that should not evaluate to TRUE for min_cks -1
cycles after start_event initiates a check (unless min_cks is 0) and
that should evaluate to TRUE before max_cks cycles transpire
(unless max_cks is 0).

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

Accellera Standard OVL V2 LRM, 2.8.1144

OVL Checkers
ovl_frame

March 2014

3. Unless it is disabled by setting max_cks to 0 (or a minimum violation has occurred), a
maximum check is initiated. The check evaluates test_expr at each subsequent active
edge of clock for the next (max_cks - min_cks) cycles. However, if a sampled value of
test_expr is TRUE, the checker returns to the state of waiting for a start event. If its
value does not transition to TRUE by the time max_cks cycles transpire (from the start
of checking), the maximum check fails at cycle max_cks.

4. The checker returns to the state of waiting for a start event.

The method used to determine how to handle start_event when the checker is in the state of
checking test_expr is controlled by the action_on_new_start parameter. The checker has the
following actions:

• OVL_IGNORE_NEW_START

The checker does not sample start_event until it returns to the state of waiting for a start
event.

• OVL_RESET_ON_NEW_START

Each time the checker samples test_expr, it also samples start_event. If start_event is
rising, then:

• If test_expr is TRUE, a frame violation occurs and all pending checks are
terminated.

• If test_expr is not TRUE, pending checks are terminated (no violation occurs even if
the current cycle is the last cycle of a max_cks check or a cycle with a pending
min_cks check). If min_cks and max_cks are not both 0, new frame checks are
initiated.

• OVL_ERROR_ON_NEW_START

Each time the checker samples test_expr, it also samples start_event. If start_event is
TRUE, the assertion fails with an illegal start event error. If the error is not fatal, the
checker returns to the state of waiting for a start event at the next active clock edge.

Assertion Checks

FRAME_MIN Value of test_expr was TRUE at a rising start_event or before
min_cks cycles after a rising start_event.

FRAME_MAX Value of test_expr was not TRUE at a cycle starting min_cks
cycles after a rising start_event and ending max_cks after the
rising edge of start_event.

FRAME_MIN0_MAX_0 Both min_cks and max_cks are 0, but the value of test_expr was
not TRUE at the rising edge of start_event.

OVL Checkers
ovl_frame

Accellera Standard OVL V2 LRM, 2.8.1 145
March 2014

Implicit X/Z Checks

Cover Points

Cover Groups

none

Notes
1. The special case where min_cks and max_cks are both 0 is the default. Here, test_expr

must be TRUE every cycle there is a start event.

See also

illegal start event The action_on_new_start parameter is set to
OVL_ERROR_ON_NEW_START and a rising start_event
occurred while a check was pending .

min_cks > max_cks The min_cks parameter is greater than the max_cks parameter
(and max_cks > 0). Unless the violation is fatal, either the
minimum or maximum check will fail.

test_expr contains X or Z Expression value was X or Z.

start_event contains X or Z Start event value was X or Z.

start_event BASIC — The value of start_event was TRUE on an active edge
of clock.

ovl_change
ovl_next
ovl_time

ovl_unchange
ovl_width

Accellera Standard OVL V2 LRM, 2.8.1146

OVL Checkers
ovl_frame

March 2014

Examples
Example 1

Checks that after a rising edge of req, ack goes high between 2 and 4 cycles later. New start
events during transactions are not considered to be new transactions and are ignored.

ovl_frame #(

‘OVL_ERROR,
2,
4,
‘OVL_IGNORE_NEW_START,
‘OVL_ASSERT,
“Error: invalid transaction”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// min_cks
// max_cks
// action_on_new_start
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_transaction (

clock,
reset,
enable,
req,
ack,
fire_valid_transaction);

// clock
// reset
// enable
// start_event
// test_expr
// fire

clock

reset

ack

FRAME Error: invalid transaction

req

1 2 3 4 1 2 3

OVL Checkers
ovl_frame

Accellera Standard OVL V2 LRM, 2.8.1 147
March 2014

Example 2

Checks that after a rising edge of req, ack goes high between 2 and 4 cycles later. A new start
event during a transaction restarts the transaction.

ovl_frame #(

‘OVL_ERROR,
2,
4,
‘OVL_RESET_ON_NEW_START,
‘OVL_ASSERT,
“Error: invalid transaction”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// min_cks
// max_cks
// action_on_new_start
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_transaction (

clock,
reset,
enable,
req,
ack,
fire_valid_transaction);

// clock
// reset
// enable
// start_event
// test_expr
// fire

clock

reset

ack

FRAME Error: invalid transaction

req

1 2 3 4 1 2 31

Accellera Standard OVL V2 LRM, 2.8.1148

OVL Checkers
ovl_frame

March 2014

Example 3

Checks that after a rising edge of req, ack goes high between 2 and 4 cycles later. Also checks
that a new transaction does not start before the previous transaction is acknowledged. If a start
event occurs during a transaction, the checker does does not initiate a new check.

ovl_frame #(

‘OVL_ERROR,
2,
4,
‘OVL_ERROR_ON_NEW_START,
‘OVL_ASSERT,
“Error: invalid transaction”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// min_cks
// max_cks
// action_on_new_start
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_transaction (

clock,
reset,
enable,
req,
ack,
fire_valid_transaction);

// clock
// reset
// enable
// start_event
// test_expr
// fire

clock

reset

ack

illegal start event

req

1 2 3 4 1 2 3

OVL Checkers
ovl_handshake

Accellera Standard OVL V2 LRM, 2.8.1 149
March 2014

ovl_handshake
Checks that specified request and acknowledge signals follow a specified handshake protocol.

Syntax
ovl_handshake

[#(severity_level, min_ack_cycle, max_ack_cycle, req_drop,
deassert_count, max_ack_length, property_type, msg,
coverage_level, clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, req, ack, fire);

Parameters/Generics

Parameters/Generics:
severity_level
min_ack_cycle
max_ack_cycle
req_drop
deassert_count
max_ack_length

property_type
msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: event-bounded assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

min_ack_cycle Minimum number of clock cycles before acknowledge. A value
of 0 turns off the ack min cycle check. Default: 0.

max_ack_cycle Maximum number of clock cycles before acknowledge. A value
of 0 turns off the ack max cycle check. Default: 0.

req_drop If greater than 0, value of req must remain TRUE until
acknowledge. A value of 0 turns off the req drop check. Default:
0.

deassert_count Maximum number of clock cycles after acknowledge that req can
remain TRUE (i.e., req must not be stuck active). A value of 0
turns off the req deassert check. Default: 0.

max_ack_length Maximum number of clock cycles that ack can be TRUE. A
value of 0 turns off the max ack length check. Default: 0.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

ovl_handshake

fire[OVL_FIRE_WIDTH-1:0]

req

ack

clock reset enable

Accellera Standard OVL V2 LRM, 2.8.1150

OVL Checkers
ovl_handshake

March 2014

Ports

Description
The ovl_handshake assertion checker checks the single-bit expressions req and ack at each
active edge of clock to verify their values conform to the request-acknowledge handshake
protocol specified by the checker parameters/generics. A request event (where req transitions to
TRUE) initiates a transaction on the active edge of clock and an acknowledge event (where ack
transitions to TRUE) signals the transaction is complete on the active edge of clock. The
transaction must not include multiple request events and every acknowledge must have a
pending request. Other checks—to ensure the acknowledge is received in a specified window,
the request is held active until the acknowledge, the requests and acknowledges are not stuck
active and the pulse length is not too long—are enabled and controlled by the checker’s
parameters/generics.

When a violation occurs, the checker discards any pending request. Checking is restarted the
next cycle that ack is sampled FALSE.

Assertion Checks

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

req Expression that starts a transaction.

ack Expression that indicates the transaction is complete.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

MULTIPLE_REQ_VIOLATION The value of req transitioned to TRUE while waiting for an
acknowledge or while acknowledge was asserted. Extra requests
do not initiate new transactions.

OVL Checkers
ovl_handshake

Accellera Standard OVL V2 LRM, 2.8.1 151
March 2014

Implicit X/Z Checks

Cover Points

Cover Groups

none

See also

ACK_WITHOUT_REQ_
VIOLATION

The value of ack transitioned to TRUE without a pending
request.

ACK_MIN_CYCLE_
VIOLATION

The value of ack transitioned to TRUE before min_ack_cycle
clock cycles transpired after the request.

ACK_MAX_CYCLE_
VIOLATION

The value of ack did not transition to TRUE before
max_ack_cycle clock cycles transpired after the request.

REQ_DROP_VIOLATION The value of req transitioned from TRUE before an
acknowledge.

REQ_DEASSERT_VIOLATION The value of req did not transition from TRUE before
deassert_count clock cycles transpired after an acknowledge.

ACK_MAX_LENGTH_
VIOLATION

The value of ack did not transition from TRUE before
max_ack_length clock cycles transpired after an acknowledge.

req contains X or Z Req expression value was X or Z.

ack contains X or Z Ack expression value was X or Z.

cover_req_asserted BASIC — A transaction initiated.

cover_ack_asserted BASIC — A transaction completed.

ovl_win_change
ovl_win_unchange

ovl_window

Accellera Standard OVL V2 LRM, 2.8.1152

OVL Checkers
ovl_handshake

March 2014

Examples
Example 1

Checks that multiple hold requests are not made while waiting for a holda acknowledge and that
every holda acknowledge is in response to a unique hold request.

After a violation, checking is turned off until holda acknowledge is sampled deasserted.

ovl_handshake #(

‘OVL_ERROR,
0,
0,
0,
0,
0,
‘OVL_ASSERT,
“hold-holda handshake error”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// min_ack_cycle
// max_ack_cycle
// req_drop
// deassert_count
// max_ack_length
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_hold_holda (

clock,
reset,
enable,
hold,
holda,
fire_valid_hold_holda);

// clock
// reset
// enable
// req
// ack
// fire

clock

reset

holda

ack without req violation

hold

multiple req violation
clock

reset

holda

ack without req violation

hold

multiple req violation ack without req violation

clock

reset

holda

hold

multiple req violation

OVL Checkers
ovl_handshake

Accellera Standard OVL V2 LRM, 2.8.1 153
March 2014

Example 2

Checks that multiple hold requests are not made while waiting for a holda acknowledge and that
every holda acknowledge is in response to a unique hold request. Checks that holda
acknowledge asserts 2 to 3 cycles after each hold request.

ovl_handshake #(

‘OVL_ERROR,
2,
3,
0,
0,
0,
‘OVL_ASSERT,
“hold-holda handshake error”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// min_ack_cycle
// max_ack_cycle
// req_drop
// deassert_count
// max_ack_length
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_hold_holda (

clock,
reset,
enable,
hold,
holda,
fire_valid_hold_holda);

// clock
// reset
// enable
// req
// ack
// fire

clock

reset

holda

ack max cycle violation

hold

ack min cycle violation

1 1 2 3 4

Accellera Standard OVL V2 LRM, 2.8.1154

OVL Checkers
ovl_handshake

March 2014

Example 3

Checks that multiple hold requests are not made while waiting for a holda acknowledge and that
every holda acknowledge is in response to a unique hold request. Checks that holda
acknowledge asserts for 2 cycles.

ovl_handshake #(

‘OVL_ERROR,
0,
0,
0,
0,
2,
‘OVL_ASSERT,
“hold-holda handshake error”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// min_ack_cycle
// max_ack_cycle
// req_drop
// deassert_count
// max_ack_length
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_hold_holda (

clock,
reset,
enable,
hold,
holda,
fire_valid_hold_holda);

// clock
// reset
// enable
// req
// ack
// fire

clock

reset

holda

ack max length violation

hold

OVL Checkers
ovl_handshake

Accellera Standard OVL V2 LRM, 2.8.1 155
March 2014

Example 4

Checks that multiple hold requests are not made while waiting for a holda acknowledge and that
every holda acknowledge is in response to a unique hold request. Checks that hold request
remains asserted until its holda acknowledge and then deasserts in the next cycle.

ovl_handshake #(

‘OVL_ERROR,
0,
0,
1,
1,
0,
‘OVL_ASSERT,
“hold-holda handshake error”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// min_ack_cycle
// max_ack_cycle
// req_drop
// deassert_count
// max_ack_length
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_hold_holda (

clock,
reset,
enable,
hold,
holda,
fire_valid_hold_holda);

// clock
// reset
// enable
// req
// ack
// fire

clock

reset

holda

req drop violation

hold

1

req deassert violation

Accellera Standard OVL V2 LRM, 2.8.1156

OVL Checkers
ovl_hold_value

March 2014

ovl_hold_value
Checks that once an expression matches the value of a second expression, the first expression
does not change value until a specified event window arrives and then changes value some time
in that window.

Syntax
ovl_hold_value

[#(severity_level, min, max, width, property_type, msg,
coverage_level, clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, test_expr, value, fire);

Parameters/Generics

Parameters/Generics:
severity_level
width
min
max
property_type

msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: n-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of test_expr and value. Default: 2.

min Number of cycles after the value match that the event window
opens. Default: 0 (test_expr can change value in any cycle).

max Number of cycles after the value match that the event window
closes. But if max = 0, no event window opens and there are the
following special cases:
min = 0 and max = 0

When test_expr and value match, test_expr must change
value in the next cycle.

min > 0 and max = 0
When test_expr and value match, test_expr must not change
value in the next min-1 cycles.

Default: 0.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

ovl_hold_value

fire [OVL_FIRE_WIDTH-1:0]

test_expr[width-1:0]

value[width-1:0]

clock reset enable

OVL Checkers
ovl_hold_value

Accellera Standard OVL V2 LRM, 2.8.1 157
March 2014

Ports

Description
The ovl_hold_value assertion checker checks test_expr and value at the active edge of clock. If
test_expr has changed value and the values of test_expr and value match, the checker verifies
that the value of test_expr holds as follows:

• 0 = min = max (default)

If the value of test_expr does not change in the next cycle, a hold_value violation
occurs.

• 0 = min < max

If the value of test_expr has not changed within the next max cycles, a hold_value
violation occurs.

• 0 < min ≤ max

If the value of test_expr changes before an event window opens min cycles later, a
hold_value violation occurs. Then, if the value of test_expr changes, the event window
closes. However if test_expr still has not changed value max cycles after the value
match, the event window closes and a hold_value violation occurs.

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

test_expr[width-1:0] Variable or expression to check.

value[width-1:0] Value to match with test_expr.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

Accellera Standard OVL V2 LRM, 2.8.1158

OVL Checkers
ovl_hold_value

March 2014

• 0 = max < min

If the value of test_expr changes within the next min-1 cycles a hold_value violation
occurs.

The checker returns to the state of checking test_expr and value in the next cycle.

Assertion Checks

Implicit X/Z Checks

Cover Points

HOLD_VALUE A match occurred and the expression had the same value in the
next cycle.

0 = min = max
After matching value, test_expr held the same value in the
next cycle.

A match occurred and the expression held the same value for the
next ‘max’ cycles.

0 = min < max
After matching value, test_expr held the same value for the
next max cycles.

A match occurred and the expression changed value before the
event window or held the same value through the event window.

0 < min ≤ max
After matching value, test_expr did not hold the same value
for the next min-1 cycles or test_expr held the same value for
the next max cycles.

A match occurred and the expression changed value before the
event window opened.

0 = max < min
After matching value, test_expr did not hold the same value
for the next min-1 cycles.

test_expr contains X or Z Expression contained X or Z bits.

value contains X or Z Value contained X or Z bits.

cover_test_expr_
changes

SANITY — Number of cycles test_expr changed value.

cover_hold_value_for_
min_cks

CORNER — Number of times test_expr held value for exactly
min cycles.

cover_hold_value_for_
max_cks

CORNER — Number of times test_expr held value for exactly
max+1 cycles.

OVL Checkers
ovl_hold_value

Accellera Standard OVL V2 LRM, 2.8.1 159
March 2014

Cover Groups

cover_hold_value_for_
max_cks

CORNER — Indicates that the test_expr was held exactly equal
to value for specified max clocks. Not reported if max = 0 and
min > 0.

observed_hold_time STATISTIC — Reports the hold times (in cycles) that occurred
at least once.

observed_hold_time Number of times the test_expr value was held for the specified
number of hold cycles. Bins are:
• observed_hold_time_good[min+1:maximum] — bin index is

the observed hold time in clock cycles. The value of
maximum is:
• 1 (if min = max = 0),
• min + 4095 (if min > max = 0), or
• max + 1 (if max > 0).

• observed_hold_time_bad — default.

Accellera Standard OVL V2 LRM, 2.8.1160

OVL Checkers
ovl_implication

March 2014

ovl_implication
Checks that a specified consequent expression is TRUE if the specified antecedent expression is
TRUE.

Syntax
ovl_implication

[#(severity_level, property_type, msg, coverage_level, clock_edge,
reset_polarity, gating_type)]

instance_name (clock, reset, enable, antecedent_expr, consequent_expr,
fire);

Parameters/Generics

Ports

Parameters/Generics:
severity_level
property_type
msg

coverage_level
clock_edge
reset_polarity
gating_type

Class: 1-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

ovl_implication

fire[OVL_FIRE_WIDTH-1:0]

antecedent_expr

consequent_expr

clock reset enable

OVL Checkers
ovl_implication

Accellera Standard OVL V2 LRM, 2.8.1 161
March 2014

Description
The ovl_implication assertion checker checks the single-bit expression antecedent_expr at each
active edge of clock. If antecedent_expr is TRUE, then the checker verifies that the value of
consequent_expr is also TRUE. If antecedent_expr is not TRUE, then the assertion is valid
regardless of the value of consequent_expr.

Assertion Checks

Implicit X/Z Checks

Cover Points

Cover Groups

none

Notes
1. This assertion checker is equivalent to:

ovl_always
[#(severity_level, property_type, msg, coverage_level, clock_edge,

reset_polarity, gating_type)]
instance_name (clock, reset, enable,

(antecedent_expr ? consequent_expr : 1’b1), fire);

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

antecedent_expr Antecedent expression that is tested at the clock event.

consequent_expr Consequent expression that should evaluate to TRUE if
antecedent_expr evaluates to TRUE when tested.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

IMPLICATION Expression evaluated to FALSE.

antecedent_expr contains X
or Z

Antecedent expression value was X or Z.

consequent_expr contains
X or Z

Consequent expression value was X or Z.

cover_antecedent BASIC — The antecedent_expr evaluated to TRUE.

Accellera Standard OVL V2 LRM, 2.8.1162

OVL Checkers
ovl_implication

March 2014

See also

Examples

Checks that q_not_full is TRUE at each rising edge of clock for which q_valid is TRUE.

ovl_always
ovl_always_on_edge

ovl_never
ovl_proposition

ovl_implication #(

‘OVL_ERROR,
‘OVL_ASSERT,
“Error: q valid but q full”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

not_full (

clock,
reset,
enable,
q_valid,
q_not_full,
fire_not_full);

// clock
// reset
// enable
// antecedent_expr
// consequent_expr
// fire

clock

reset

q_valid

IMPLICATION Error: q valid but q full

q_not_full

OVL Checkers
ovl_increment

Accellera Standard OVL V2 LRM, 2.8.1 163
March 2014

ovl_increment
Checks that the value of an expression changes only by the specified increment value.

Syntax
ovl_increment

[#(severity_level, width, value, property_type, msg, coverage_level,
clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, test_expr, fire);

Parameters/Generics

Ports

Parameters/Generics:
severity_level
width
value
property_type

msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: 2-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of the test_expr argument. Default: 1.

value Increment value for test_expr. Default: 1.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

ovl_increment

fire[OVL_FIRE_WIDTH-1:0]

test_expr[width-1:0]

clock reset enable

Accellera Standard OVL V2 LRM, 2.8.1164

OVL Checkers
ovl_increment

March 2014

Description
The ovl_increment assertion checker checks the expression test_expr at each active edge of
clock to determine if its value has changed from its value at the previous active edge of clock. If
so, the checker verifies that the new value equals the previous value incremented by value. The
checker allows the value of test_expr to wrap, if the total change equals the increment value.
For example, if width is 5 and value is 4, then the following change in test_expr is valid:

5’b11110 —> 5’b00010

The checker is useful for ensuring proper changes in structures such as counters and finite-state
machines. For example, the checker is useful for circular queue structures with address counters
that can wrap. Do not use this checker for variables or expressions that can decrement. Instead
consider using the ovl_delta checker.

Assertion Checks

Implicit X/Z Checks

Cover Points

Cover Groups

none

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

test_expr[width-1:0] Expression that should increment by value whenever its value
changes from the active edge of clock to the next active edge of
clock.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

INCREMENT Expression evaluated to a value that is not its previous value
incremented by value.

test_expr contains X or Z Expression value contained X or Z bits.

cover_test_expr_change BASIC — Expression changed value.

OVL Checkers
ovl_increment

Accellera Standard OVL V2 LRM, 2.8.1 165
March 2014

Notes
1. The assertion check compares the current value of test_expr with its previous value.

Therefore, checking does not start until the second rising edge of clock after reset
deasserts.

See also

Examples

Checks that the programmable counter’s count variable only increments by 1. If count wraps,
the assertion fails, because the change is not a binary increment.

ovl_decrement
ovl_delta

ovl_no_overflow

ovl_increment #(

‘OVL_ERROR,
4,
1,
‘OVL_ASSERT,
“Error: invalid binary increment”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// width
// value
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_count (

clock,
reset,
enable,
count,
fire_valid_count);

// clock
// reset
// enable
// test_expr
// fire

clock

reset

count 0000 0001 0010 0011 0100 0110 1000 1001 00000101 0111

INCREMENT Error: invalid binary increment

Accellera Standard OVL V2 LRM, 2.8.1166

OVL Checkers
ovl_memory_async

March 2014

ovl_memory_async
Checks the integrity of accesses to an asynchronous memory.

Syntax
ovl_memory_async

[#(severity_level, data_width, addr_width, mem_size, addr_check,
init_check, one_read_check, one_write_check, value_check,
property_type, msg, coverage_level, wen_edge, ren_edge,
reset_polarity, gating_type)]

instance_name (reset, enable, start_addr, end_addr, ren, raddr, rdata,
wen, waddr, wdata, fire);

Parameters/Generics

Parameters/Generics:
severity_level
data_width
addr_width
mem_size
addr_check
init_check
one_read_check
one_write_check

value_check
property_type
msg
coverage_level
ren_edge
wen_edge
reset_polarity
gating_type

Class: event-bounded assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

data_width Number of bits in a data item. Default: 1

addr_width Number of bits in an address. Default: 1

mem_size Number of data items in the memory. Default: 2

addr_check Whether or not to perform address checks.
addr_check = 0

Turns off the address check.
addr_check = 1 (Default)

Turns on the address check.

init_check Whether or not to perform initialization checks.
init_check = 0

Turns off the initialization check.
init_check = 1 (Default)

Turns on the initialization check.

fire [OVL_FIRE_WIDTH-1:0]

start_addr[addr_width-1:0]
end_addr[addr_width-1:0]

ren
raddr[addr_width-1:0]
rdata[data_width-1:0]
wen
waddr[addr_width-1:0]
wdata[data_width-1:0]

ovl_memory_async

reset enable

OVL Checkers
ovl_memory_async

Accellera Standard OVL V2 LRM, 2.8.1 167
March 2014

Ports

one_read_check Whether or not to perform one_read checks.
one_read_check = 0 (Default)

Turns off the one_read check
one_read_check = 1

Turns on the one_read check.

one_write_check Whether or not to perform one_write checks.
one_write_check = 0 (Default)

Turns off the one_write check.
one_write_check = 1

Turns on the one_write check.

value_check Whether or not to perform value checks.
value_check = 0 (Default)

Turns off the value check.
value_check = 1

Turns on the value check.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

ren_edge Active edge of the ren input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

wen_edge Active edge of the wen input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for ren and wen, if gating_type =
OVL_GATE_CLOCK (the default gating type) or reset (if
gating_type = OVL_GATE_RESET). Ignored if gating_type is
OVL_NONE.

start_addr First address of the memory.

end_addr Last address of the memory.

Accellera Standard OVL V2 LRM, 2.8.1168

OVL Checkers
ovl_memory_async

March 2014

Description
The ovl_memory_async checker checks the two memory access enable signals wen and ren
combinationally. The active edges of these signals are specified the wen_edge and ren_edge
parameters/generics (and by enable if gating_type is OVL_GATE_CLOCK). At the active edge
of wen, the values of waddr, start_addr and end_addr are checked. If waddr is not in the range
[start_addr:end_addr], an address check violation occurs. Otherwise, a write operation to the
location specified by waddr is assumed. Similarly, at the active edge of ren, the values of raddr,
start_addr and end_addr are checked. If raddr is not in the range [start_addr:end_addr], an
address check violation occurs. Otherwise, a read operation from the location specified by raddr
is assumed. Also, if raddr is uninitialized (i.e., has not been written to previously or at the
current time), then an initialization check violation occurs.

By default, the address and init checks are on, but can be turned off by setting the addr_check
and init_check parameters/generics to 0. Note that other checks are valid only if the addresses
are valid, so it is recommended that addr_check be left at 1. The checker can be configured to
perform the following additional checks:

• one_write_check = 1

At the active edge of wen, if the previous access to the data at the address specified by
waddr was a write or a simultaneous read/write to that address, a one_write check
violation occurs, unless the current operation is a simultaneous read/write to that
location.

• one_read_check = 1

At the active edge of ren, if the previous access to the data at the address specified by
raddr was a read (but not a simultaneous read/write to that address), a one_read check
violation occurs.

ren Read enable input, whose active edge initiates a read operation
from the memory location specified by raddr.

raddr Read address input.

rdata Read data input that holds the data item read from memory.

wen Write enable input, whose active edge initiates a write operation
of the data item in wdata to the memory location specified by
waddr.

waddr Write address input.

wdata Write data input.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

OVL Checkers
ovl_memory_async

Accellera Standard OVL V2 LRM, 2.8.1 169
March 2014

• value_check = 1

At the active edge of wen, the current value of wdata is the value assumed to be written
to the memory location specified by waddr. At the active edge of ren, if the value of
rdata does not match the expected value last written to the address specified by raddr, a
value check violation occurs.

Note that when active edges of wen and ren occur together, a simultaneous read/write operation
is assumed. Here, the read is performed first (for example, if raddr = waddr).

Assertion Checks

ADDRESS Write address was out of range.
At an active edge of wen, waddr < start_addr or waddr >
end_addr.

Read address was out of range.
At an active edge of ren, raddr < start_addr or raddr >
end_addr.

INITIALIZATION Read location was not initialized.
At an active edge of ren, the memory location pointed to by
raddr had not had data written to it since the last reset.

ONE_READ Memory location had two read accesses without an intervening
write access.

one_read_check = 1
At an active edge of ren, the previous access to the memory
location pointed to by raddr was another read.

ONE_WRITE Memory location had two write accesses without an intervening
read access.

one_read_check = 1
At an active edge of wen, the previous access to the memory
location pointed to by waddr was another write (and the
current memory access is not a simultaneous read/write to
that location).

VALUE Data item read from a location did not match the data last written
to that location.

value_check = 1
At an active edge of ren, the value of rdata did not equal the
expected value, which was the value of wdata when a write
access to the memory location pointed to by the current value
of raddr last occurred.

Accellera Standard OVL V2 LRM, 2.8.1170

OVL Checkers
ovl_memory_async

March 2014

Implicit X/Z Checks

Cover Points

start_addr contains X or Z Start address contained X or Z bits.

end_addr contains X or Z End address contained X or Z bits.

raddr contains X or Z Read address contained X or Z bits.

rdata contains X or Z Read data contained X or Z bits.

waddr contains X or Z Write address contained X or Z bits.

wdata contains X or Z Write data contained X or Z bits.

cover_reads SANITY — Number of read accesses.

cover_writes SANITY — Number of write accesses.

cover_write_then_read_
from_same_addr

BASIC — Number of times a write access was followed by a
read from the same address.

cover_read_addr STATISTIC — Reports which addresses were read at least once.

cover_write_addr STATISTIC — Reports which addresses were written at least
once.

cover_two_writes_
without_read

STATISTIC — Number of times a memory location had two
write accesses but no read access of the data item stored by the
first write.

cover_two_reads_
without_write

STATISTIC — Number of times a memory location had two
read accesses but no write access overwriting the data item read
by the first read.

cover_read_from_start_
addr

CORNER — Number of read accesses to the location specified
by start_addr.

cover_write_to_start_
addr

CORNER — Number of write accesses to the location specified
by start_addr.

cover_read_from_end_
addr

CORNER — Number of read accesses to the location specified
by end_addr.

cover_write_to_end_
addr

CORNER — Number of write accesses to the location specified
by end_addr.

cover_write_then_read_
from_start_addr

CORNER — Number of times a write access to start_addr was
followed by a read from start_addr.

cover_write_then_read_
from_end_addr

CORNER — Number of times a write access to end_addr was
followed by a read from end_addr.

OVL Checkers
ovl_memory_async

Accellera Standard OVL V2 LRM, 2.8.1 171
March 2014

Cover Groups

observed_read_addr Number of read operations made from the specified address. Bins
are:
• observed_read_addr[0:addr_width - 1] — bin index is the

memory address.

observed_write_addr Number of write operations made to the specified address. Bins
are:
• observed_write_addr[0:addr_width - 1] — bin index is the

memory address.

Accellera Standard OVL V2 LRM, 2.8.1172

OVL Checkers
ovl_memory_sync

March 2014

ovl_memory_sync
Checks the integrity of accesses to a synchronous memory.

Syntax
ovl_memory_sync

[#(severity_level, data_width, addr_width, mem_size, addr_check,
init_check, conflict_check, pass_thru, one_read_check,
one_write_check, value_check, property_type, msg,
coverage_level, wen_edge, ren_edge, reset_polarity,
gating_type)]

instance_name (reset, enable, start_addr, end_addr, r_clock, ren,
raddr, rdata, w_clock, wen, waddr, wdata, fire);

Parameters/Generics

Parameters/Generics:
severity_level
data_width
addr_width
mem_size
pass_thru
addr_check
init_check
conflict_check
one_read_check

one_write_check
value_check
property_type
msg
coverage_level
wen_edge
ren_edge
reset_polarity
gating_type

Class: event-bounded assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

data_width Number of bits in a data item. Default: 1

addr_width Number of bits in an address. Default: 1

mem_size Number of data items in the memory. Default: 2

pass_thru How the memory handles a simultaneous read and write access to
the same address. This parameter applies to the initialization and
value checks.
pass_thru = 0 (Default)

No pass-through mode (i.e., read before write). Simultaneous
read/write access to the same location should return the
current data item as the read data.

pass_thru = 1
Pass-through mode (i.e., write before read). Simultaneous
read/write access to the same location should return the new
data item as the read data. Only specify pass-through mode if
r_clock === w_clock and conflict_check = 0.

fire [OVL_FIRE_WIDTH-1:0]

start_addr[addr_width-1:0]
end_addr[addr_width-1:0]

ren
raddr[addr_width-1:0]
rdata[data_width-1:0]
wen
waddr[addr_width-1:0]
wdata[data_width-1:0]

ovl_memory_sync

r_clock w_clock

reset enable

OVL Checkers
ovl_memory_sync

Accellera Standard OVL V2 LRM, 2.8.1 173
March 2014

addr_check Whether or not to perform address checks.
addr_check = 0

Turns off the address check.
addr_check = 1 (Default)

Turns on the address check.

init_check Whether or not to perform initialization checks.
init_check = 0

Turns off the initialization check.
init_check = 1 (Default)

Turns on the initialization check.

conflict_check Whether or not to perform conflict checks.
conflict_check = 0 (Default)

Turns off the conflict check.
conflict_check = 1

Turns on the conflict check. Only select the conflict check if
r_clock === w_clock.

one_read_check Whether or not to perform one_read checks.
one_read_check = 0 (Default)

Turns off the one_read check.
one_read_check = 1

Turns on the one_read check.

one_write_check Whether or not to perform one_write checks.
one_write_check = 0 (Default)

Turns off the one_write check.
one_write_check = 1

Turns on the one_write check.

value_check Whether or not to perform value checks.
value_check = 0 (Default)

Turns off the value check.
value_check = 1

Turns on the value check.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

ren_edge Active edge of the r_clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

wen_edge Active edge of the w_clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

Accellera Standard OVL V2 LRM, 2.8.1174

OVL Checkers
ovl_memory_sync

March 2014

Ports

Description
The ovl_memory_async checker checks wen at the active edge of w_clock. If wen is TRUE, the
checker checks the values of waddr, start_addr and end_addr. If waddr is not in the range
[start_addr:end_addr], an address check violation occurs. Otherwise, a write operation to the
location specified by waddr is assumed. Similarly, the checker checks ren at the active edge of
r_clock. If ren is TRUE, the checker checks the values of raddr, start_addr and end_addr. If
raddr is not in the range [start_addr:end_addr], an address check violation occurs. Otherwise, a
read operation from the location specified by raddr is assumed. Also, if raddr is uninitialized
(i.e., has not been written to previously or at the current time), then an initialization check
violation occurs.

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for r_clock and w_clock, if gating_type =
OVL_GATE_CLOCK (the default gating type) or reset (if
gating_type = OVL_GATE_RESET). Ignored if gating_type is
OVL_NONE.

start_addr First address of the memory.

end_addr Last address of the memory.

r_clock Clock event for read operations.

ren Read enable input that initiates a read operation from the memory
location specified by raddr.

raddr Read address input.

rdata Read data input that holds the data item read from memory.

w_clock Clock event for write operations.

wen Write enable input that initiates a write operation of the data item
in wdata to the memory location specified by waddr.

waddr Write address input.

wdata Write data input.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

OVL Checkers
ovl_memory_sync

Accellera Standard OVL V2 LRM, 2.8.1 175
March 2014

By default, the address and init checks are on, but can be turned off by setting the addr_check
and init_check parameters/generics to 0. Note that other checks are valid only if the addresses
are valid, so it is recommended that addr_check be left at 1.

The checker can be configured to perform the following additional checks:

• conflict_check = 1

At the active edges of w_clock/r_clock, if wen = ren = TRUE and waddr = raddr, then a
conflict check violation occurs (w_clock and r_clock must be the same signal).

• one_write_check = 1

pass_thru = 0

At the active edge of w_clock, if wen is TRUE and the previous access to the data at
the address specified by waddr was a write or a simultaneous read/write to that
address, a one_write check violation occurs, unless the current operation is a
simultaneous read/write to that location.

pass_thru = 1

At the active edge of w_clock, if wen is TRUE and the previous access to the data at
the address specified by waddr was a write (but not a simultaneous read/write to that
address), a one_write check violation occurs.

• one_read_check = 1

pass_thru = 0

At the active edge of r_clock, if ren is TRUE and the previous access to the data at
the address specified by raddr was a read (but not a simultaneous read/write to that
address), a one_read check violation occurs.

pass_thru = 1

At the active edge of r_clock, if ren is TRUE and the previous access to the data at
the address specified by raddr was a read or a simultaneous read/write to that
address, a one_read check violation occurs, unless the current operation is a
simultaneous read/write to that location.

• value_check = 1

At the active edge of w_clock, if wen is TRUE, the current value of wdata is the value
assumed to be written to the memory location specified by waddr. At the active edge of
r_clock, if ren is TRUE and the value of rdata does not match the expected value last
written to the address specified by raddr, a value check violation occurs.

Accellera Standard OVL V2 LRM, 2.8.1176

OVL Checkers
ovl_memory_sync

March 2014

Assertion Checks

ADDRESS Write address was out of range.
At an active edge of w_clock, wen was TRUE but waddr <
start_addr or waddr > end_addr.

Read address was out of range.
At an active edge of r_clock, ren was TRUE but raddr <
start_addr or raddr > end_addr.

INITIALIZATION Read location was not initialized.
At an active edge of r_clock, ren was TRUE but the memory
location pointed to by raddr had not had data written to it
since the last reset.

CONFLICT Simultaneous read/write accesses to same address.
conflict_check = 1
At an active edge of r_clock, ren was TRUE but wen was also
TRUE and raddr = waddr. This check assumes r_clock and
w_clock are the same signal.

ONE_READ Memory location had two read accesses without an intervening
write access.

one_read_check = 1
At an active edge of r_clock, ren was TRUE but the previous
access to the memory location pointed to by raddr was
another read.

ONE_WRITE Memory location had two write accesses without an intervening
read access.

one_read_check = 1
At an active edge of w_clock, wen was TRUE but the
previous access to the memory location pointed to by waddr
was another write.

VALUE Data item read from a location did not match the data last written
to that location.

value_check = 1
At an active edge of r_clock, ren was TRUE but the value of
rdata did not equal the expected value, which was the value
of wdata when a write access to the memory location pointed
to by the current value of raddr last occurred.

OVL Checkers
ovl_memory_sync

Accellera Standard OVL V2 LRM, 2.8.1 177
March 2014

Implicit X/Z Checks

Cover Points

start_addr contains X or Z Start address contained X or Z bits.

end_addr contains X or Z End address contained X or Z bits.

ren contains X or Z Read enable was X or Z.

raddr contains X or Z Read address contained X or Z bits.

rdata contains X or Z Read data contained X or Z bits.

wen contains X or Z Write enable was X or Z.

waddr contains X or Z Write address contained X or Z bits.

wdata contains X or Z Write data contained X or Z bits.

cover_reads SANITY — Number of read accesses.

cover_writes SANITY — Number of write accesses.

cover_write_then_read_
from_same_addr

BASIC — Number of times a write access was followed by a
read from the same address.

cover_same_addr_
simultaneous_
read_write

CORNER — Number of times a simultaneous read/write access
to the same address occurred. Not meaningful unless pass_thru is
1.

cover_different_addr_
simultaneous_
read_write

CORNER — Number of times a simultaneous read/write access
to different addresses occurred. Not meaningful unless pass_thru
is 1.

cover_read_from_start_
addr

CORNER — Number of read accesses to the location specified
by start_addr.

cover_write_to_start_
addr

CORNER — Number of write accesses to the location specified
by start_addr.

cover_read_from_end_
addr

CORNER — Number of read accesses to the location specified
by end_addr.

cover_write_to_end_
addr

CORNER — Number of write accesses to the location specified
by end_addr.

cover_write_then_read_
from_start_addr

CORNER — Number of times a write access to start_addr was
followed by a read from start_addr.

cover_write_then_read_
from_end_addr

CORNER — Number of times a write access to end_addr was
followed by a read from end_addr.

cover_read_addr STATISTIC — Reports which addresses were read at least once.

cover_write_addr STATISTIC — Reports which addresses were written at least
once.

Accellera Standard OVL V2 LRM, 2.8.1178

OVL Checkers
ovl_memory_sync

March 2014

Cover Groups

cover_read_to_write_
delays

STATISTIC — Reports which delays (in numbers of active
w_clock edges) from a read to the next write (to any address)
occurred at least once.

cover_write_to_read_
delays

STATISTIC — Reports which delays (in numbers of active
r_clock edges) from a write to the next read (to any address)
occurred at least once.

cover_two_writes_
without_read

STATISTIC — Number of times a memory location had two
write accesses but no read access of the data item stored by the
first write.

cover_two_reads_
without_write

STATISTIC — Number of times a memory location had two
read accesses but no write access overwriting the data item read
by the first read.

observed_read_addr Number of read operations made from the specified address. Bins
are:
• observed_read_addr[0:addr_width - 1] — bin index is the

memory address.

observed_write_addr Number of write operations made to the specified address. Bins
are:
• observed_write_addr[0:addr_width - 1] — bin index is the

memory address.

observed_delay_from_
read_to_write

Number of times the delay (in cycles) between a read from a
memory location and a write to that location matched the
specified latency value. Bins are:
• observed_delay_from_read_to_write[0:31] — bin index is

the observed latency.

observed_delay_from_
write_to_read

Number of times the delay (in cycles) between a write to a
memory location and a read from that location matched the
specified latency value. Bins are:
• observed_delay_from_write_to_read[0:31] — bin index is

the observed latency.

OVL Checkers
ovl_multiport_fifo

Accellera Standard OVL V2 LRM, 2.8.1 179
March 2014

ovl_multiport_fifo
Checks the data integrity of a FIFO with multiple enqueue and dequeue ports, and checks that
the FIFO does not overflow or underflow.

Syntax
ovl_multiport_fifo

[#(severity_level, width, depth, enq_count, deq_count,
preload_count, pass_thru, registered, high_water_mark,
enq_latency, deq_latency, value_check, full_check, empty_check,
property_type, msg, coverage_level, clock_edge, reset_polarity,
gating_type)]

instance_name (clock, reset, enable, enq, deq, enq_data, deq_data,
full, empty, preload, fire);

Parameters/Generics

*if preload_count = 0:
preload is width bits wide

Parameters/Generics:
severity_level
width
depth
enq_count
deq_count
pass_thru
registered
enq_latency
deq_latency
preload_count

high_water_mark
full_check
empty_check
value_check
property_type
msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: n-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of a data item in the FIFO. Default: 1.

depth FIFO depth. The depth must be > 0 . Default: 2.

enq_count Number of FIFO enqueue ports. Must be ≤ depth. Default: 2.

deq_count Number of FIFO dequeue ports. Must be ≤ depth. Default: 2.

fire [OVL_FIRE_WIDTH-1:0]

enq[enq_count-1:0]
deq[deq_count-1:0]
full
empty

deq_data[deq_count*width-1:0]

ovl_multiport_fifo
enq_data[enq_count*width-1:0]

preload[preload_count*width-1:0]*
clock reset enable

Accellera Standard OVL V2 LRM, 2.8.1180

OVL Checkers
ovl_multiport_fifo

March 2014

pass_thru How the FIFO handles dequeues and enqueues in the same cycle
if the FIFO count is such that a dequeue violation might occur.
pass_thru = 0 (Default)

No pass-through mode means dequeue before enqueue. A
dequeue violation occurs if the number of scheduled
dequeues > the current FIFO count.

pass = 1
Pass-through mode means enqueue before dequeue. A
dequeue violation occurs if the number of scheduled
dequeues – the number of scheduled enqueues > the current
FIFO count.

registered How the FIFO handles dequeues and enqueues in the same cycle
if the FIFO count is such that an enqueue violation might occur.
registered = 0 (Default)

No registered mode means enqueue before dequeue. An
enqueue violation occurs if the current FIFO count + the
number of scheduled enqueues > depth.

registered = 1
Registered mode means dequeue before enqueue. An
enqueue violation occurs if the current FIFO count + the
number of scheduled enqueues – the number scheduled
dequeues > depth.

enq_latency Latency for enqueue data.
enq_latency = 0 (Default)

Checks and coverage assume enq_data is valid and the
enqueue operation is performed in the same cycle enq asserts.

enq_latency > 0
Checks and coverage assume enq_data is valid and the
enqueue operation is performed enq_latency cycles after enq
asserts.

deq_latency Latency for dequeued data. It is used for the value check.
deq_latency = 0 (Default)

Checks and coverage assume deq_data is valid and the
dequeue operation is performed in the same cycle deq asserts.

deq_latency > 0
Checks and coverage assume deq_data is valid and the
dequeue operation is performed deq_latency cycles after deq
asserts.

preload_count Number of items to preload the FIFO on reset. The preload port
is a concatenated list of items to be preloaded into the FIFO.
Default: 0 (FIFO empty on reset).

high_water_mark FIFO high-water mark. Must be < depth. A value of 0 disables
the high_water_mark cover point. Default: 0.

OVL Checkers
ovl_multiport_fifo

Accellera Standard OVL V2 LRM, 2.8.1 181
March 2014

Ports

full_check Whether or not to perform full checks.
full_check = 0 (Default)

Turns off the full check.
full_check = 1

Turns on the full check.

empty_check Whether or not to perform empty checks.
empty_check = 0 (Default)

Turns off the empty check.
empty_check = 1

Turns on the empty check.

value_check Whether or not to perform value checks.
value_check = 0 (Default)

Turns off the value check.
value_check = 1

Turns on the value check.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

enq[enq_count-1:0] Concatenation of FIFO enqueue inputs. When one or more enq
bits are sampled TRUE, the FIFO performs an enqueue operation
from the asserted bits’ corresponding enqueue data ports
(enq_latency cycles later). Data items are enqueued in order from
the least to most-significant bits and the FIFO counter is
incremented by the number of TRUE enq bits

Accellera Standard OVL V2 LRM, 2.8.1182

OVL Checkers
ovl_multiport_fifo

March 2014

deq[deq_count-1:0] Concatenation of FIFO dequeue inputs. When one or more deq
bits are sampled TRUE, the FIFO performs a dequeue operation
from the asserted bits’ corresponding dequeue data ports
(deq_latency cycles later). Data items are dequeued in order from
the least to most-significant bits and the FIFO counter is
decremented by the number of TRUE deq bits

full Output status flag from the FIFO.
full = 0

FIFO not full.
full = 1

FIFO full.

empty Output status flag from the FIFO.
empty = 0

FIFO not empty.
empty = 1

FIFO empty.

enq_data
[enq_count*width-1:0]

Concatenation of enqueue data inputs. If the value check is on,
this port contains the data items to enqueue enq_latency cycles
after the enq bits assert.

deq_data
[deq_count*width-1:0]

Concatenation of dequeue data inputs. If the value check is on,
this port contains the dequeued data items deq_latency cycles
after the deq bits assert.

preload
[preload_count*width-1
:0]

Concatenated preload data to enqueue on reset.
preload_count = 0
No preload of the FIFO is assumed. The width of preload should
be width, however no values from preload are used. The FIFO is
assumed to be empty on reset.
preload_count > 0
Checker assumes the value of preload is a concatenated list of
items that were all enqueued on the FIFO on reset (or simulation
start). The width of preload should be preload_count * width
(preload items are the same width). Preload values are enqueued
from the low order item to the high order item.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

OVL Checkers
ovl_multiport_fifo

Accellera Standard OVL V2 LRM, 2.8.1 183
March 2014

Description
The ovl_multiport_fifo assertion checker checks that a multiport FIFO functions legally. A
multiport FIFO is a memory structure that stores and retrieves data items based on a first-in
first-out queueing protocol. The FIFO can have multiple enqueue data ports and multiple
dequeue data ports (the number of each does need to match). Each enqueue data port has a
corresponding enqueue signal that indicates the data port’s value should be enqueued. Similarly,
each dequeue data port has a corresponding dequeue signal that indicates a data item from the
FIFO should be dequeued to that port.

A FIFO with multiple enqueue ports can signal an enqueue from any combination of the ports
each enqueue clock cycle. Similarly, a FIFO with multiple dequeue ports can signal a dequeue
to any combination of the ports each dequeue clock cycle. When multiple ports are enqueued
(dequeued) in a cycle, the order their contents are enqueued (dequeued) is always the same. A
FIFO can also have enqueue and dequeue latency constants. Enqueue latency is the number of
clock cycles after an enqueue signal asserts that the corresponding enqueue data value is valid at
the corresponding enqueue data port. Dequeue latency is the number of clock cycles it takes for
a dequeue to produce a data value at its corresponding dequeue port.

To connect the ovl_multiport_fifo checker to the FIFO logic:

• Concatenate the enqueue signals—arranged in order from first-in (least-significant bit)
to last-in (most-significant bit)—and connect to the enq port. Concatenate the dequeue
signals—arranged in order from first-out (least-significant bit) to last-out (most-
significant bit)—and connect to the deq port.

• If the checker will perform value checks, concatenate the enqueue data ports in the same
order as the enq bits and connect to the enq_data port. Concatenate the dequeue data
ports in the same order as the deq bits and connect to the deq_data port. Otherwise,
connect enq_data and deq_data to 0.

• If the checker will perform full checks, connect the FIFO-full status flag to the full port.
Otherwise, connect full to 1’b0. If the checker will perform empty checks, connect the
FIFO-full status flag to the empty port. Otherwise, connect empty to 1’b0.

The checker checks enq and deq at the active edge of clock. If an enq bit is TRUE, an enqueue
operation is scheduled for the corresponding enqueue data port enq_latency cycles later (or in
the current cycle if enq_latency is 0). Similarly, if a deq bit is TRUE, a dequeue operation is
scheduled to the corresponding dequeue data port deq_latency cycles later (or in the current
cycle if deq_latency is 0).

At each active edge of clock, the checker does the following:

1. Updates its FIFO counter with the results of enqueues and dequeues from the previous
cycle.

2. Checks the full flag if full_check is 1. If full is FALSE and the FIF0 count = depth or if
full is TRUE and the FIFO count < depth, a full check violation occurs.

Accellera Standard OVL V2 LRM, 2.8.1184

OVL Checkers
ovl_multiport_fifo

March 2014

3. Checks the empty flag if empty_check is 1. If empty is FALSE and the FIF0 count = 0 or
if empty is TRUE and the FIFO count > 0, an empty check violation occurs.

4. Checks for a potential overflow. If the number of enqueues scheduled for the current
cycle exceeds the current number of unused FIFO locations, an enqueue check violation
occurs. In this case, since the FIFO state is unknown, value checks are turned off until
the next checker reset.

5. Checks for a potential underflow. If the number of dequeues scheduled for the current
cycle exceeds the current number of FIFO entries, a dequeue check violation occurs. In
this case, since the FIFO state is unknown, value checks are turned off until the next
checker reset.

6. If value_check is 1 (and no enqueue or dequeue violations have occurred), the checker
maintains an internal copy of what it expects the FIFO entries to be. The checker issues
a value check violation for each internal dequeued data item that does not match the
corresponding value of deq_data.

A corner-case situation occurs when both enqueues and dequeues are scheduled simultaneously
in the same cycle. By default, the checker enforces the best-case (i.e., most restrictive)
scenarios. For the enqueue check, enqueues are “performed” before dequeues. For the dequeue
check, dequeues are “performed” before enqueues. However, the checker can be configured to
allow worse-case (i.e., less restrictive) scenarios by setting the registered and pass_thru
parameters/generics:

• In registered mode, the enqueue check calculates the FIFO count by subtracting the
number of dequeues before adding the number of enqueues, resulting in a less restrictive
check.

• In pass-through mode, the dequeue check calculates the FIFO count by adding the
number of enqueues before subtracting the number of dequeues, resulting in a less
restrictive check.

By default, the FIFO is empty at the start of the first cycle after a reset (or the start of
simulation). However, the checker can be configured to match a FIFO that contains data items
at these initial points. To do this, the checker “preloads” these data items. The preload_count
parameter specifies the number of data items to preload.

If value_check is 1, at the start of any cycle in which reset has transitioned from active to
inactive, the checker reads the preload port. This is a port containing a concatenated value equal
to preload_count data items. The checker enqueues these data items onto the internal FIFO in
order from the low-order item to the high-order item.

Uses: FIFO, queue, buffer, ring buffer, elasticity buffer.

OVL Checkers
ovl_multiport_fifo

Accellera Standard OVL V2 LRM, 2.8.1 185
March 2014

Assertion Checks

ENQUEUE Enqueue occurred that would overflow the FIFO.
registered = 0

One or more enq bits were TRUE, but enq_latency cycles
later, FIFO count + number of enqueued items > depth.

registered = 1
One or more enq bits were TRUE, but enq_latency cycles
later, FIFO count + number of enqueued items – number of
dequeued items.

DEQUEUE Dequeue occurred that would underflow the FIFO.
pass_thru = 0

One or more deq bits were TRUE, but deq_latency cycles
later, FIFO count < number of dequeued items.

pass_thru = 1
One or more deq bits were TRUE, but deq_latency cycles
later, FIFO count < number of dequeued items – number of
enqueued items.

FULL The FIFO was not full when the full signal was
asserted.

Full was TRUE, but the FIFO contained fewer than depth
items.

The full signal was not asserted when the FIFO was
full.

Full was FALSE, but the FIFO \contained depth items.

FULL FIFO ‘full’ signal was asserted, but the FIFO was not
full.

FIFO contained fewer than depth items but full was TRUE.

FIFO ‘full’ signal was not asserted, but the FIFO was
full.

FIFO contained depth items and full was FALSE.

EMPTY FIFO ‘empty’ signal was asserted, but the FIFO was
not empty.

FIFO contained one or more items but empty was TRUE.

FIFO ‘empty’ signal was not asserted, but the FIFO
was empty.

FIFO contained no items but empty was FALSE.

Accellera Standard OVL V2 LRM, 2.8.1186

OVL Checkers
ovl_multiport_fifo

March 2014

Implicit X/Z Checks

Cover Points

VALUE Dequeued FIFO value did not equal the corresponding
enqueued value.
deq_latency = 0

A deq bit was TRUE, but the corresponding data item in
deq_data did not equal the item originally enqueued.

deq_latency > 0
A deq bit was TRUE, but deq_latency cycles later the
corresponding data item in deq_data did not equal the item
originally enqueued.

This check automatically turns off if an enqueue or dequeue
check violation occurs since it is no longer possible to correspond
enqueued with dequeued values. The check turns back on when
the checker resets.

enq contains X or Z Enqueue contained X or Z bits.

deq contains X or Z Dequeue contained X or Z bits.

full contains X or Z FIFO full signal was X or Z. Check is off if full_check is 0.

empty contains X or Z FIFO empty signal was X or Z. Check is off if empty_check is 0.

enq_data contains X or Z Enqueue data item in the enq_data expression contained X or Z
bits when it was scheduled to be enqueued onto the FIFO.

deq_data contains X or Z Dequeue data item in the deq_data expression contained X or Z
bits when it was scheduled to be dequeued from the FIFO.

cover_enqueues SANITY — Number of data items enqueued on the FIFO.

cover_dequeues SANITY — Number of data items dequeued from the FIFO.

cover_simultaneous_
enq_deq

BASIC — Number of cycles both an enqueue and a dequeue
(to/from the same port??) were scheduled to occur.

cover_high_water_mark CORNER — Number of times the FIFO count transitioned from
< high_water_mark to ≥ high_water_mark. Not reported if
high_water_mark is 0.

cover_simultaneous_
deq_enq_when_empty

CORNER — Number of cycles the FIFO was enqueued and
dequeued simultaneously when it was empty.

cover_simultaneous_
deq_enq_when_full

CORNER — Number of cycles the FIFO was enqueued and
dequeued simultaneously when it was full.

cover_fifo_empty CORNER — Number of cycles FIFO was empty after processing
enqueues and dequeues for the cycle.

cover_fifo_full CORNER — Number of cycles FIFO was full after processing
enqueues and dequeues for the cycle.

OVL Checkers
ovl_multiport_fifo

Accellera Standard OVL V2 LRM, 2.8.1 187
March 2014

Cover Groups

cover_observed_counts STATISTIC — Reports the FIFO counts that occurred at least
once.

multiport_fifo_corner Number of cycles the number of entries in the FIFO changed to a
value with the specified characteristic. Bins are:
• cov_fifo_full_count — FIFO is full.
• cov_fifo_empty_count — FIFO is empty.
• cov_fifo_full_count — number of entries is ≥

high_water_mark.

multiport_fifo_
statistic

Current number of entries in the FIFO. Bin is:
• cov_observed_fifo_contents

Accellera Standard OVL V2 LRM, 2.8.1188

OVL Checkers
ovl_mutex

March 2014

ovl_mutex
Checks that the bits of an expression are mutually exclusive.

Syntax
ovl_mutex

[#(severity_level, width, invert_mode, property_type, msg,
coverage_level, clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, test_expr, fire);

Parameters/Generics

Parameters/Generics:
severity_level
width
invert_mode
property_type

msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: 1-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of test_expr. Default: 2.

invert_mode Sense of the active bits for the mutex check.
invert_mode = 0 (Default)

Expression value must not have more than one TRUE bit.
invert_mode = 1

Expression value must not have more than one FALSE bit.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

ovl_mutex

fire [OVL_FIRE_WIDTH-1:0]

test_expr[width-1:0]

clock reset enable

OVL Checkers
ovl_mutex

Accellera Standard OVL V2 LRM, 2.8.1 189
March 2014

Ports

Description
The ovl_mutex assertion checker checks test_expr at each active edge of clock. By default, if
more than one bit of test_expr is TRUE, a mutex violation occurs. Setting invert_mode to 1
reverses the sense of the bits. A mutex violation occurs if more than one bit of test_expr is
FALSE.

 Assertion Checks

Implicit X/Z Checks

Cover Points

Cover Groups

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

test_expr[width-1:0] Variable or expression to check.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

MUTEX Expression’s bits are not mutually exclusive.
invert_mode = 0

Expression had more than one TRUE bit.
invert_mode = 1

Expression had more than one FALSE bit.

test_expr contains X or Z Expression contained X or Z bits.

cover_values_checked SANITY — Number of cycles test_expr loaded a new value.

cover_no_mutex_bits CORNER — Number of cycles all bits in test_expr were TRUE
and invert_mode = 0 or all bits in test_expr were FALSE and
invert_mode = 1.

cover_all_mutexes_
covered

CORNER — Whether or not all mutex bits were covered.

cover_mutex_bitmap STATISTIC — Number of cycles a new mutex bit was covered
legally. The TRUE bits of the mutex_bitmap variable indicate the
covered mutex bits.

Accellera Standard OVL V2 LRM, 2.8.1190

OVL Checkers
ovl_mutex

March 2014

none

OVL Checkers
ovl_never

Accellera Standard OVL V2 LRM, 2.8.1 191
March 2014

ovl_never
Checks that the value of an expression is not TRUE.

Syntax
ovl_never

[#(severity_level, property_type, msg, coverage_level, clock_edge,
reset_polarity, gating_type)]

instance_name (clock, reset, enable, test_expr, fire);

Parameters/Generics

Ports

Parameters/Generics:
severity_level
property_type
msg

coverage_level
clock_edge
reset_polarity
gating_type

Class: 1-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

ovl_never

fire[OVL_FIRE_WIDTH-1:0]

test_expr

clock reset enable

Accellera Standard OVL V2 LRM, 2.8.1192

OVL Checkers
ovl_never

March 2014

Description
The ovl_never assertion checker checks the single-bit expression test_expr at each active edge
of clock to verify the expression does not evaluate to TRUE.

Assertion Checks

Implicit X/Z Checks

Cover Points

none

Cover Groups

none

Notes
1. By default, the ovl_never assertion is pessimistic and the assertion fails if test_expr is

not 0 (i.e.equals 1, X, Z, etc.). However, if OVL_XCHECK_OFF is set, the assertion
fails if and only if test_expr is 1.

See also

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

test_expr Expression that should not evaluate to TRUE on the active clock
edge.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

NEVER Expression evaluated to TRUE.

test_expr contains X or Z Expression value contained X or Z bits.

ovl_always
ovl_always_on_edge

ovl_implication
ovl_proposition

OVL Checkers
ovl_never

Accellera Standard OVL V2 LRM, 2.8.1 193
March 2014

Examples

Checks that (reg_a < reg_b) is FALSE at each rising edge of clock.

ovl_never #(

‘OVL_ERROR,
‘OVL_ASSERT,
“”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_count (

clock,
reset,
enable,
reg_a < reg_b,
fire_valid_count);

// clock
// reset
// enable
// test_expr
// fire

clock

reset

reg_a < reg_b

NEVER

x

test_expr contains X/Z value

Accellera Standard OVL V2 LRM, 2.8.1194

OVL Checkers
ovl_never_unknown

March 2014

ovl_never_unknown
Checks that the value of an expression contains only 0 and 1 bits when a qualifying expression
is TRUE.

Syntax
ovl_never_unknown

[#(severity_level, width, property_type, msg, coverage_level,
clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, qualifier, test_expr, fire);

Parameters/Generics

Ports

Parameters/Generics:
severity_level
property_type
msg

coverage_level
clock_edge
reset_polarity
gating_type

Class: 1-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of the test_expr argument. Default: 1.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

ovl_never_unknown

fire[OVL_FIRE_WIDTH-1:0]

qualifier

test_expr[width-1:0]

clock reset enable

OVL Checkers
ovl_never_unknown

Accellera Standard OVL V2 LRM, 2.8.1 195
March 2014

Description
The ovl_never_unknown assertion checker checks the expression qualifier at each active edge
of clock to determine if it should check test_expr. If qualifier is sampled TRUE, the checker
evaluates test_expr and if the value of test_expr contains a bit that is not 0 or 1, the assertion
fails.

The checker is useful for ensuring certain data have only known values following a reset
sequence. It also can be used to verify tristate input ports are driven and tristate output ports
drive known values when necessary.

Assertion Checks

Cover Points

Cover Groups

none

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

qualifier Expression that indicates whether or not to check test_expr .

test_expr[width-1:0] Expression that should contain only 0 or 1 bits when qualifier is
TRUE.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

test_expr contains X/Z
value

The test_expr expression contained at least one bit that was not 0
or 1; qualifier was sampled TRUE; and OVL_XCHECK_OFF is
not set.

cover_qualifier BASIC — A never_unknown check was initiated.

cover_test_expr_change SANITY — Expression changed value.

Accellera Standard OVL V2 LRM, 2.8.1196

OVL Checkers
ovl_never_unknown

March 2014

Notes
1. If OVL_XCHECK_OFF is set, all ovl_never_unknown checkers are turned off.

See also

Examples

Checks that values of data are known and driven when rd_data is TRUE.

ovl_never
ovl_never_unknown_async
ovl_one_cold

ovl_one_hot
ovl_zero_one_hot

 ovl_never_unknown #(

‘OVL_ERROR,
8,
‘OVL_ASSERT,
“Error: data unknown or undriven”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// width
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_data (

clock,
reset,
enable,
rd_data,
data,
fire_valid_data);

// clock
// reset
// enable
// qualifier
// test_expr
// fire

clock

reset

data

NEVER_UNKNOWN Error: data unknown or undriven

rd_data

XXXX 10XX 1010 XXXX 00XX 001X 0010 XXXX

OVL Checkers
ovl_never_unknown_async

Accellera Standard OVL V2 LRM, 2.8.1 197
March 2014

ovl_never_unknown_async
Checks that the value of an expression combinationally contains only 0 and 1 bits.

Syntax
ovl_never_unknown_async

[#(severity_level, width, property_type, msg, coverage_level,
clock_edge, reset_polarity, gating_type)]

instance_name (reset, enable, test_expr, fire);

Parameters/Generics

Ports

Parameters/Generics:
severity_level
width
property_type
msg

coverage_level
clock_edge
reset_polarity
gating_type

Class: combinational assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of the test_expr argument. Default: 1.

property_type Property type. Cannot be OVL_ASSUME for SVA and PSL
implementations. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Ignored parameter.

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

reset Synchronous reset signal indicating completed initialization.

ovl_never_unknown_async

fire[OVL_FIRE_WIDTH-1:0]

test_expr[width-1:0]

reset enable

Accellera Standard OVL V2 LRM, 2.8.1198

OVL Checkers
ovl_never_unknown_async

March 2014

Description
The ovl_never_unknown_async assertion checker combinationally evaluates test_expr and if
the value of test_expr contains a bit that is not 0 or 1, the assertion fails.

The checker is useful for ensuring certain data have only known values following a reset
sequence. It also can be used to verify tristate input ports are driven and tristate output ports
drive known values when necessary.

Assertion Checks

Cover Points

Cover Groups

none

Notes
1. If OVL_XCHECK_OFF is set, all ovl_never_unknown_async checkers are turned off.

2. The Verilog-95 version of this asynchronous checker handles ‘OVL_ASSERT,
‘OVL_ASSUME and ‘OVL_IGNORE. The SVA and PSL versions of this checker do
not implement property_type ‘OVL_ASSUME. The SVA version uses immediate
assertions and in IEEE 1800-2005 SystemVerilog immediate assertions cannot be
assumptions. Assume is only available in a concurrent (clocked) form of an assertion
statement. The SVA version treats ‘OVL_ASSUME as an ‘OVL_ASSERT. The PSL
version generates an error if property_type is ‘OVL_ASSUME.

See also

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

test_expr[width-1:0] Expression that should contain only 0 or 1 bits when qualifier is
TRUE.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

test_expr contains X/Z
value

The test_expr expression contained at least one bit that was not 0
or 1 and OVL_XCHECK_OFF is not set.

none

ovl_never

OVL Checkers
ovl_never_unknown_async

Accellera Standard OVL V2 LRM, 2.8.1 199
March 2014

Examples

Checks that values of data are known and driven while bus_gnt is TRUE.

 ovl_never_unknown_async #(

‘OVL_ERROR,
8,
‘OVL_ASSERT,
“Error: data unknown or undriven”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// width
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_data (

bus_gnt,
enable,
data,
fire_valid_data);

// reset
// enable
// test_expr
// fire

data

NEVER_UNKNOWN_ASYNC Error: data unknown or undriven

bus_gnt

XXXX 1010 1010 XXXX 00XX 0011 XXXX1X10

Accellera Standard OVL V2 LRM, 2.8.1200

OVL Checkers
ovl_next

March 2014

ovl_next
Checks that the value of an expression is TRUE a specified number of cycles after a start event.

Syntax
ovl_next

[#(severity_level, num_cks, check_overlapping, check_missing_start,
property_type, msg, coverage_level, clock_edge, reset_polarity,
gating_type)]

instance_name (clock, reset, enable, start_event, test_expr, fire);

Parameters/Generics

Parameters/Generics:
severity_level
num_cks
check_overlapping
check_missing_start
property_type

msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: n-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

num_cks Number of cycles after start_event is TRUE to wait to check that
the value of test_expr is TRUE. Default: 1.

check_overlapping Whether or not to perform overlap checking. Default: 1 (overlap
checking off).
• If set to 0, overlap checking is performed. From the active

edge of clock after start_event is sampled TRUE to the active
edge of clock of the cycle before test_expr is sampled for the
current next check, the checker performs an overlap check.
During this interval, if start_event is TRUE at an active edge
of clock, then the overlap check fails (illegal overlapping
condition).

• If set to 1, overlap checking is not performed.

check_missing_start Whether or not to perform missing-start checking. Default: 0
(missing-start checking off).
• If set to 0, missing start checks are not performed.
• If set to 1, missing start checks are performed. The checker

samples test_expr every active edge of clock. If the value of
test_expr is TRUE, then num_cks active edges of clock prior
to the current time, start_event must have been TRUE
(initiating a next check). If not, the missing-start check fails
(start_event without test_expr).

ovl_next

fire[OVL_FIRE_WIDTH-1:0]

start_event

test_expr

clock reset enable

OVL Checkers
ovl_next

Accellera Standard OVL V2 LRM, 2.8.1 201
March 2014

Ports

Description
The ovl_next assertion checker checks the expression start_event at each active edge of clock. If
start_event is TRUE, a check is initiated. The check waits for num_cks cycles (i.e., for num_cks
additional active edges of clock) and evaluates test_expr. If test_expr is not TRUE, the assertion
fails. These checks are pipelined, that is, a check is initiated each cycle start_event is TRUE
(even if overlap checking is on and even if an overlap violation occurs).

If overlap checking is off (check_overlapping is 1), additional checks can start while a current
check is pending. If overlap checking is on, the assertion fails if start_event is sampled TRUE
while a check is pending (except on the last clock).

If missing-start checking is off (check_missing_start is 0), test_expr can be TRUE any time. If
missing-start checking is on, the assertion fails if test_expr is TRUE without a corresponding

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

start_event Expression that (along with num_cks) identifies when to check
test_expr.

test_expr Expression that should evaluate to TRUE num_cks cycles after
start_event initiates a next check.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

Accellera Standard OVL V2 LRM, 2.8.1202

OVL Checkers
ovl_next

March 2014

start event (num_cks cycles previously). However, if test_expr is TRUE in the interval of
num_cks - 1 cycles after a reset and has no corresponding start event, the result is indeterminate
(i.e., the missing-start check might or might not fail).

Assertion Checks

Implicit X/Z Checks

Cover Points

Cover Groups

none

See also

start_event without
test_expr

The value of start_event was TRUE on an active edge of clock,
but num_cks cycles later the value of test_expr was not TRUE.

illegal overlapping
condition detected

The check_overlapping parameter is set to 0 and start_event was
TRUE on the active edge of clock, but a previous check was
pending.

test_expr without
start_event

The check_missing_start parameter is set to 1 and start_event
was not TRUE on the active edge of clock, but num_cks cycles
later test_expr was TRUE.

num_cks <= 0 The num_cks parameter is less than 1.

num_cks == 1 and
check_overlapping == 0

The num_cks parameter is 1 and check_overlapping is 0, which
turns on overlap checking even though overlaps are not relevant.

test_expr contains X or Z Expression value was X or Z.

start_event contains X or Z Start event value was X or Z.

cover_start_event BASIC — The value of start_event was TRUE on an active edge
of clock.

cover_overlapping_
start_events

CORNER — The check_overlapping parameter is TRUE and the
value of start_event was TRUE on an active edge of clock while
a check was pending.

ovl_change
ovl_frame

ovl_time
ovl_unchange

OVL Checkers
ovl_next

Accellera Standard OVL V2 LRM, 2.8.1 203
March 2014

Examples
Example 1

Checks that b is TRUE 4 cycles after a is TRUE.

ovl_next #(

‘OVL_ERROR,
4,
1,
0,
‘OVL_ASSERT,
“error:”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// num_cks
// check_overlapping (off)
// check_missing_start (off)
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_next_a_b (

clock,
reset,
enable,
a,
b,
fire_valid_next_a_b);

// clock
// reset
// enable
// start_event
// test_expr
// fire

clock

reset

b

start_event without test_expr error

a

Accellera Standard OVL V2 LRM, 2.8.1204

OVL Checkers
ovl_next

March 2014

Example 2

Checks that b is TRUE 4 cycles after a is TRUE. Overlaps are not allowed

ovl_next #(

‘OVL_ERROR,
4,
0,
0,
‘OVL_ASSERT,
“error:”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// num_cks
// check_overlapping (on)
// check_missing_start (off)
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_next_a_b (

clock,
reset,
enable,
a,
b,
fire_valid_next_a_b);

// clock
// reset
// enable
// start_event
// test_expr
// fire

clock

reset

b

illegal overlapping condition detected error

a

not an overlap
on last cycle

OVL Checkers
ovl_next

Accellera Standard OVL V2 LRM, 2.8.1 205
March 2014

Example 3

Checks that b is TRUE 4 cycles after a is TRUE. Missing-start check is on.

ovl_next #(

‘OVL_ERROR,
4,
1,
1,
‘OVL_ASSERT,
“error:”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// num_cks
// check_overlapping (off)
// check_missing_start (on)
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_next_a_b (

clock,
reset,
enable,
a,
b,
fire_valid_next_a_b);

// clock
// reset
// enable
// start_event
// test_expr
// fire

clock

reset

b

test_expr without start_event error

a

missing-start check indeterminate
for 3 cycles after reset

Accellera Standard OVL V2 LRM, 2.8.1206

OVL Checkers
ovl_next_state

March 2014

ovl_next_state
Checks that an expression transitions only to specified values.

Syntax
ovl_next_state

[#(severity_level, next_count, width, min_hold, max_hold, disallow,
property_type, msg, coverage_level, clock_edge, reset_polarity,
gating_type)]

instance_name (clock, reset, enable, test_expr, curr_state, next_state,
fire);

Parameters/Generics

Parameters/Generics:
severity_level
width
next_count
min_hold
max_hold
disallow

property_type
msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: event-bounded assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of test_expr. Default: 1

next_count Number of next state values. The next_state port is a
concatenated list of next state values. Default: 1.

min_hold Minimum number of cycles test_expr must not change value
when it matches the value of curr_state. Must be > 0. Default: 1

max_hold Maximum number of cycles test_expr can remain unchanged
when it matches the value of curr_state. A value of 0 turns off
checking for a maximum hold time. Must be 0 or > min_hold.
Default: 1

disallow Sense of the comparison of test_expr with next_state.
disallow = 0 (Default)

Next value of test_expr should match one of the values in
next_state.

disallow = 1
Next value of test_expr should not match one of the values in
next_state.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

ovl_next_state

fire [OVL_FIRE_WIDTH-1:0]
test_expr[width-1:0]
curr_state[width-1:0]

next_state[next_count*width-1:0]

clock reset enable

OVL Checkers
ovl_next_state

Accellera Standard OVL V2 LRM, 2.8.1 207
March 2014

Ports

Description
The ovl_next_state assertion checker evaluates test_expr and curr_state at each active edge of
clock. If the value of test_expr matches the value of curr_state, the checker verifies that the
value of test_expr behaves as follows:

• If min_hold > 0 and test_expr changes value before min_hold cycles (including the
match cycle) transpire, a next_state violation occurs.

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

test_expr[width-1:0] State variable or expression to check.

curr_state[width-1:0] Value to compare with test_expr. If no event window is open and
the value of test_expr matches the value curr_state, an event
window opens.

next_state
[next_count*width-1:0]

Concatenated list of next values.
disallow = 0

Next values are valid values for test_expr when an event
window closes.

disallow = 1
Next values are not valid values for test_expr when an event
window closes.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

Accellera Standard OVL V2 LRM, 2.8.1208

OVL Checkers
ovl_next_state

March 2014

• Otherwise, when test_expr transitions, the checker evaluates next_state. If the new value
of test_expr is not a value in next_state, a next_state violation occurs.

• However, if max_hold > 0 and test_expr does not change value before max_hold cycles
(including the match cycle) transpire, a next_state violation occurs.

A next_state check is initiated each cycle test_expr and curr_state match.

Setting the disallow parameter to 1, changes the sense of the matching of test_expr and
next_state values. A next_state violation occurs if test_expr transitions to a value in next_state.

Uses: FSM, state machine, controller, coverage, line coverage, path coverage, branch coverage,
state coverage, arc coverage.

Assertion Checks

NEXT_STATE Match occurred but expression value was not a next
value, or expression changed too soon.

disallow = 0 and max_hold = 0
After matching curr_state, test_expr changed value before
min_hold cycles (including the match cycle) or transitioned to
a value not in next_state when it transitioned.

Match occurred but expression value was not a next
value, or expression did not change in event window.

disallow = 0 and max_hold > 0
After matching curr_state, test_expr changed value before
min_hold cycles (including the match cycle), transitioned to a
value not in next_state when it transitioned, or did not change
value for max_hold cycles (including the match cycle).

Match occurred but expression value was a next
value, or expression changed too soon.

disallow = 1 and max_hold = 0
After matching curr_state, test_expr changed value before
min_hold cycles (including the match cycle) or transitioned to
a value in next_state when it transitioned.

Match occurred but expression value was a next
value, or expression did not change in event window.

disallow = 1 and max_hold > 0
After matching curr_state, test_expr changed value before
min_hold cycles (including the match cycle), transitioned to a
value in next_state when it transitioned, or did not change
value for max_hold cycles (including the match cycle).

OVL Checkers
ovl_next_state

Accellera Standard OVL V2 LRM, 2.8.1 209
March 2014

Implicit X/Z Checks

Cover Points

Cover Groups

test_expr contains X or Z Expression contained X or Z bits.

curr_state contains X or Z Current state expression contained X or Z bits.

next_state contains X or Z Next state expression contained X or Z bits.

cover_next_state_
transitions

SANITY — Number of times test_expr matched curr_state and
then transitioned correctly to a value in next_state (disallow=0)
or not in next_state (disallow=1).

cover_all_transitions CORNER — Non-zero if test_expr transitioned to every next
value found in the sampled next_state. Not meaningful if
disallow is 1.

cover_cycles_checked STATISTIC — Number of cycles test_expr matched curr_state.

observed_transition STATISTIC — Reports which values in next_state that test_expr
transitioned to at least once. Not meaningful if disallow is 1.

next_state_corner Whether or not the specified corner case occurred. Bin is:
• all_transitions_covered — The test_expr has transitioned to

every next value found in the sampled next_state. Not
meaningful if disallow is 1.

next_state_statistic Coverage statistics. Bins are:
• number_of_transitions_covered — number of transitions

made.
• cycles_checked — number of cycles test_expr and curr_state

matched.

Accellera Standard OVL V2 LRM, 2.8.1210

OVL Checkers
ovl_no_contention

March 2014

ovl_no_contention
Checks that a bus is driven according to specified contention rules.

Syntax
ovl_no_contention

[#(severity_level, min_quiet, max_quiet, num_drivers, width,
property_type, msg, coverage_level, clock_edge, reset_polarity,
gating_type)]

instance_name (clock, reset, enable, test_expr, driver_enables, fire);

Parameters/Generics

Parameters/Generics:
severity_level
width
num_drivers
min_quiet
max_quiet

property_type
msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: event-bounded assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of test_expr. Default: 2.

num_drivers Width of driver_enables. Default: 2.

min_quiet Minimum number of cycles the bus must be quiet (i.e., when all
driver_enables bits are 0) between transactions. Default: 0 (quiet
periods between transactions are not necessary).

max_quiet Maximum number of cycles the bus can be quiet (i.e., when all
driver_enables bits are 0). The min_quiet parameter must be ≤
max_quiet. Default: 0 (quiet periods between transactions should
not occur).

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

ovl_no_contention

fire [OVL_FIRE_WIDTH-1:0]

test_expr[width-1:0]

driver_enables[num_drivers-1:0]

clock reset enable

OVL Checkers
ovl_no_contention

Accellera Standard OVL V2 LRM, 2.8.1 211
March 2014

Ports

Description
The ovl_no_contention assertion checker checks the bus (test_expr) and the driver enable
signals (driver_enables) at each active edge of clock. An implicit X/Z check violation occurs if
any driver_enables bit is X or Z.. Otherwise:

• Number of TRUE driver_enables bits is > 1:

A single_driver violation occurs and if test_expr contains an X or Z bit, a no_xz
violation occurs.

• Number of TRUE driver_enables bits is 1:

If test_expr contains an X or Z bit, a no_xz violation occurs.

In addition, the checker performs quiet-time checks. A quiet time consists of consecutive cycles
or bus inactivity where no bus transactions are occurring (i.e., driver_enables = 0). The checker
verifies the specified configuration as follows:

• 0 = min_quiet = max_quiet (default)

A quiet violation occurs each cycle driver_enables = 0.

• 0 = min_quiet < max_quiet

A quiet violation occurs if driver_enables = 0 for max_quiet+1 consecutive cycles.

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

test_expr[width-1:0] Bus to be checked.

driver_enables
[num_drivers-1:0]

Enable bits for the drivers of test_expr.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

Accellera Standard OVL V2 LRM, 2.8.1212

OVL Checkers
ovl_no_contention

March 2014

• 0 < min_quiet ≤ max_quiet

A quiet violation occurs if either of the following occur:

• The driver_enables expression transitions to 0 and then transitions from 0 less than
min_quiet cycles later.

• The driver_enables expression = 0 for max_quiet+1 cycles.

• 0 = max_quiet < min_quiet

A quiet violation occurs if driver_enables transitions to 0 and then transitions from 0
less than min_quiet cycles later.

Assertion Checks

Implicit X/Z Checks

Cover Points

SINGLE_DRIVER Bus has multiple drivers.
Number of TRUE bits in driver_enables is > 1.

NO_XZ Bus is driven, but has X or Z bits.
Number of TRUE bits in driver_enables is > 0, but test_expr
has one or more X or Z bits.

QUIET Bus was quiet.
0 = min_quiet = max_quiet
Driver_enables was 0.

Bus was quiet for too many cycles.
0 = min_quiet < max_quiet
Driver_enables was 0 for more than max_quiet consecutive
cycles.

Bus was quiet for too few or too many cycles.
0 < min_quiet ≤ max_quiet
Driver_enables was not held 0 for at least min_quiet
consecutive cycles or was 0 for more than max_quiet cycles.

Bus was quiet for too few cycles.
0 = max_quiet < min_quiet
Driver_enables was not held 0 for at least min_quiet
consecutive cycles.

driver_enables contains X
or Z

Drivers enabled expression contained X or Z bits.

cover_driver_bitmap BASIC — Bit map of the driver_enables signals that have been
TRUE at least once.

OVL Checkers
ovl_no_contention

Accellera Standard OVL V2 LRM, 2.8.1 213
March 2014

Cover Groups

cover_quiet_equals_
min_quiet

CORNER — Number of quiet periods that were exactly
min_quiet cycles long (min_quiet > 0) or number of times bus
control transferred from one driver to another (min_quiet = 0).

cover_quiet_equals_
max_quiet

CORNER — Number of quiet periods that were exactly
max_quiet cycles long. Not meaningful if max_quiet = 0.

observed_quiet_cycles STATISTIC — Reports the quiet periods (in cycles) that have
occurred at least once.

observed_quiet_cycles Number of times the bus (test_expr) was quiet (driver_enables =
0) for the specified number of quiet cycles. Bins are:
• observed_quiet_cycles_good[min_quiet+1:maximum] — bin

index is the observed quiet time in clock cycles. The value of
maximum is:
• 0 (if min_quiet = max_quiet = 0),
• min_quiet + 4095 (if min_quiet > max_quiet = 0), or
• max_quiet (if max_quiet > 0).

• observed_hold_time_bad — default.

Accellera Standard OVL V2 LRM, 2.8.1214

OVL Checkers
ovl_no_overflow

March 2014

ovl_no_overflow
Checks that the value of an expression does not overflow.

Syntax
ovl_no_overflow

[#(severity_level, width, min, max, property_type, msg,
coverage_level, clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, test_expr, fire);

Parameters/Generics

Parameters/Generics:
severity_level
width
min
max
property_type

msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: n-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of the test_expr argument. Width must be less than or
equal to 32. Default: 1.

min Minimum value in the test range of test_expr. Default: 0.

max Maximum value in the test range of test_expr. Default: 2**width
- 1.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

ovl_no_overflow

fire[OVL_FIRE_WIDTH-1:0]

test_expr[width-1:0]

clock reset enable

OVL Checkers
ovl_no_overflow

Accellera Standard OVL V2 LRM, 2.8.1 215
March 2014

Ports

Description
The ovl_no_overflow assertion checker checks the expression test_expr at each active edge of
clock to determine if its value has changed from a value (at the previous active edge of clock)
that was equal to max. If so, the checker verifies that the new value has not overflowed max.
That is, it verifies the value of test_expr is not greater than max or less than or equal to min (in
which case, the assertion fails).

The checker is useful for verifying counters, where it can ensure the counter does not wrap from
the highest value to the lowest value in a specified range. For example, it can be used to check
that memory structure pointers do not wrap around. For a more general test for overflow, use
ovl_delta or ovl_fifo_index.

Assertion Checks

Implicit X/Z Checks

Cover Points

Cover Groups

none

Errors

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

test_expr[width-1:0] Expression that should not change from a value of max to a value
out of the test range or to a value equal to min.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

NO_OVERFLOW Expression changed value from max to a value not in the range
min + 1 to max - 1.

test_expr contains X or Z Expression value contained X or Z bits.

cover_test_expr_at_min CORNER — Expression evaluated to min.

cover_test_expr_at_max BASIC — Expression evaluated to max.

Accellera Standard OVL V2 LRM, 2.8.1216

OVL Checkers
ovl_no_overflow

March 2014

The parameters/generics min and max must be specified such that min is less than or equal to
max. Otherwise, the assertion fails on each tested clock cycle for which test_expr changed from
max.

Notes
1. The assertion check compares the current value of test_expr with its previous value.

Therefore, checking does not start until the second rising edge of clock after reset
deasserts.

See also

Examples

Checks that addr does not overflow (i.e., change from a value of 4 at the rising edge of clock to
a value of 0 or a value greater than 4 at the next rising edge of clock).

ovl_delta
ovl_fifo_index

ovl_increment
ovl_no_overflow

ovl_no_overflow #(

‘OVL_ERROR,
3,
0,
4,
‘OVL_ASSERT,
“Error: addr overflow”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// width
// min
// max
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

addr_with_overflow (

clock,
reset,
enable,
addr,
fire_addr_with_overflow);

// clock
// reset
// enable
// test_expr
// fire

clock

reset

addr

NO_OVERFLOW Error: addr overflow

x 0 1 2 3 4 0 3 4 5 0 1

NO_OVERFLOW Error: addr overflow

OVL Checkers
ovl_no_transition

Accellera Standard OVL V2 LRM, 2.8.1 217
March 2014

ovl_no_transition
Checks that the value of an expression does not transition from a start state to the specified next
state.

Syntax
ovl_no_transition

[#(severity_level, width, property_type, msg, coverage_level,
clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, test_expr, start_state,
next_state, fire);

Parameters/Generics

Parameters/Generics:
severity_level
width
property_type
msg

coverage_level
clock_edge
reset_polarity
gating_type

Class: 2-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of the test_expr argument. Default: 1.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

fire [OVL_FIRE_WIDTH-1:0]
test_expr[width-1:0]

next_state[width-1:0]

ovl_no_transition
start_state[width-1:0]

clock reset enable

Accellera Standard OVL V2 LRM, 2.8.1218

OVL Checkers
ovl_no_transition

March 2014

Ports

Description
The ovl_no_transition assertion checker checks the expression test_expr and start_state at each
active edge of clock to see if they are the same. If so, the checker evaluates and stores the
current value of next_state. At the next active edge of clock, the checker re-evaluates test_expr
to see if its value equals the stored value of next_state. If so, the assertion fails. The checker
returns to checking start_state in the current cycle (unless a fatal failure occurred)

The start_state and next_state expressions are verification events that can change. In particular,
the same assertion checker can be coded to verify multiple types of transitions of test_expr.

The checker is useful for ensuring certain control structure values (such as counters and finite-
state machine values) do not transition to invalid values.

Assertion Checks

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

test_expr[width-1:0] Expression that should not transition to next_state on the active
edge of clock if its value at the previous active edge of clock is
the same as the current value of start_state.

start_state[width-1:0] Expression that indicates the start state for the assertion check. If
the start state matches the value of test_expr on the previous
active edge of clock, the check is performed.

next_state[width-1:0] Expression that indicates the invalid next state for the assertion
check. If the value of test_expr was start_state at the previous
active edge of clock, then the value of test_expr should not equal
next_state on the current active edge of clock.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

NO_TRANSITION Expression transitioned from start_state to a value equal to
next_state.

OVL Checkers
ovl_no_transition

Accellera Standard OVL V2 LRM, 2.8.1220

OVL Checkers
ovl_no_transition

March 2014

cycle. If requests is not greater than 2 and current_state is ‘ONE_IN_Q, current_state should
not transition to ‘EMPTY in the next cycle.

clock

reset

requests

NO_TRANSITION Error: bad state transition

current_state ‘IDLE ‘ONE_IN_Q

0

‘EMPTY ‘FULL ‘EMPTY ‘ONE_IN_Q

2 1 3 1 2 1

OVL Checkers
ovl_no_underflow

Accellera Standard OVL V2 LRM, 2.8.1 221
March 2014

ovl_no_underflow
Checks that the value of an expression does not underflow.

Syntax
ovl_no_underflow

[#(severity_level, width, min, max, property_type, msg,
coverage_level, clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, test_expr, fire);

Parameters/Generics

Parameters/Generics:
severity_level
width
min
max
property_type

msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: 2-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of the test_expr argument. Width must be less than or
equal to 32. Default: 1.

min Minimum value in the test range of test_expr. Default: 0.

max Maximum value in the test range of test_expr. Default: 2**width
- 1.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

ovl_no_underflow

fire[OVL_FIRE_WIDTH-1:0]

test_expr[width-1:0]

clock reset enable

Accellera Standard OVL V2 LRM, 2.8.1222

OVL Checkers
ovl_no_underflow

March 2014

Ports

Description
The ovl_no_underflow assertion checker checks the expression test_expr at each active edge of
clock to determine if its value has changed from a value (at the previous active edge of clock)
that was equal to min. If so, the checker verifies that the new value has not underflowed min.
That is, it verifies the value of test_expr is not less than min or greater than or equal to max (in
which case, the assertion fails).

The checker is useful for verifying counters, where it can ensure the counter does not wrap from
the lowest value to the highest value in a specified range. For example, it can be used to check
that memory structure pointers do not wrap around. For a more general test for underflow, use
ovl_delta or ovl_fifo_index.

Assertion Checks

Implicit X/Z Checks

Cover Points

Cover Groups

none

Errors

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

test_expr[width-1:0] Expression that should not change from a value of min to a value
out of range or to a value equal to max.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

NO_UNDERFLOW Expression changed value from min to a value not in the range
min + 1 to max - 1.

test_expr contains X or Z Expression value contained X or Z bits.

cover_test_expr_at_min BASIC — Expression evaluated to min.

cover_test_expr_at_max CORNER — Expression evaluated to max.

OVL Checkers
ovl_no_underflow

Accellera Standard OVL V2 LRM, 2.8.1 223
March 2014

The parameters/generics min and max must be specified such that min is less than or equal to
max. Otherwise, the assertion fails on each tested clock cycle for which test_expr changed from
max.

Notes
1. The assertion check compares the current value of test_expr with its previous value.

Therefore, checking does not start until the second rising edge of clock after reset
deasserts.

See also

Examples

Checks that addr does not underflow (i.e., change from a value of 3 at the rising edge of clock to
a value of 7 or a value less than 3 at the next rising edge of clock).

ovl_delta
ovl_decrement

ovl_fifo_index
ovl_no_overflow

ovl_no_underflow #(

‘OVL_ERROR,
3,
3,
7,
‘OVL_ASSERT,
“Error: addr underflow”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// width
// min
// max
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

addr_with_underflow (

clock,
resetr s
‘OVL_ACTI m thire_underflow (

Accellera Standard OVL V2 LRM, 2.8.1224

OVL Checkers
ovl_odd_parity

March 2014

ovl_odd_parity
Checks that the value of an expression has odd parity.

Syntax
ovl_odd_parity

[#(severity_level, width, property_type, msg, coverage_level,
clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, test_expr, fire);

Parameters/Generics

Ports

Parameters/Generics:
severity_level
width
property_type
msg

coverage_level
clock_edge
reset_polarity
gating_type

Class: 1-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of the test_expr argument. Default: 1.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

ovl_odd_parity

fire[OVL_FIRE_WIDTH-1:0]

test_expr[width-1:0]

clock reset enable

OVL Checkers
ovl_odd_parity

Accellera Standard OVL V2 LRM, 2.8.1 225
March 2014

Description
The ovl_odd_parity assertion checker checks the expression test_expr at each active edge of
clock to verify the expression evaluates to a value that has odd parity. A value has odd parity if
the number of bits set to 1 is odd.

The checker is useful for verifying control circuits, for example, it can be used to verify a finite-
state machine with error detection. In a datapath circuit the checker can perform parity error
checking of address and data buses.

Assertion Checks

Implicit X/Z Checks

Cover Points

Cover Groups

none

See also

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

test_expr[width-1:0] Expression that should evaluate to a value with odd parity on the
active clock edge.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

ODD_PARITY Expression evaluated to a value whose parity is not odd.

test_expr contains X or Z Expression value contained X or Z bits.

cover_test_expr_change SANITY — Expression has changed value.

ovl_even_parity

Accellera Standard OVL V2 LRM, 2.8.1226

OVL Checkers
ovl_odd_parity

March 2014

Examples

Checks that data has odd parity at each rising edge of clock.

ovl_odd_parity #(

‘OVL_ERROR,
8,
‘OVL_ASSERT,
“Error: data has even parity”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// width
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_data_odd_parity (

clock,
reset,
enable,
data,
fire_valid_data_odd_parity);

// clock
// reset
// enable
// test_expr
// fire

clock

reset

data

ODD_PARITY

B

Error: data has even parity

4 7 E 9 B 2 1 D

OVL Checkers
ovl_one_cold

Accellera Standard OVL V2 LRM, 2.8.1 227
March 2014

ovl_one_cold
Checks that the value of an expression is one-cold (or equals an inactive state value, if
specified).

Syntax
ovl_one_cold

[#(severity_level, width, inactive, property_type, msg,
coverage_level, clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, test_expr, fire);

Parameters/Generics

Parameters/Generics:
severity_level
width
inactive
property_type

msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: 1-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of the test_expr argument. Default: 32.

inactive Inactive state of test_expr: OVL_ALL_ZEROS,
OVL_ALL_ONES or OVL_ONE_COLD. Default:
OVL_ONE_COLD.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

ovl_one_cold

fire[OVL_FIRE_WIDTH-1:0]

test_expr[width-1:0]

clock reset enable

Accellera Standard OVL V2 LRM, 2.8.1228

OVL Checkers
ovl_one_cold

March 2014

Ports

Description
The ovl_one_cold assertion checker checks the expression test_expr at each active edge of clock
to verify the expression evaluates to a one-cold or inactive state value. A one-cold value has
exactly one bit set to 0. The inactive state value for the checker is set by the inactive parameter.
Choices are: OVL_ALL_ZEROS (e.g., 4‘b0000), OVL_ALL_ONES (e.g.,4‘b1111) or
OVL_ONE_COLD. The default inactive parameter value is OVL_ONE_COLD, which
indicates test_expr has no inactive state (so only a one-cold value is valid for each check).

The checker is useful for verifying control circuits, for example, it can ensure that a finite-state
machine with one-cold encoding operates properly and has exactly one bit asserted low. In a
datapath circuit the checker can ensure that the enabling conditions for a bus do not result in bus
contention.

Assertion Checks

Implicit X/Z Checks

Cover Points

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

test_expr[width-1:0] Expression that should evaluate to a one-cold or inactive value on
the active clock edge.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

ONE_COLD Expression assumed an active state with multiple bits set to 0.

test_expr contains X or Z Expression value contained X or Z bits.

cover_test_expr_change SANITY — Expression has changed value.

cover_all_one_colds_
checked

CORNER — Expression evaluated to all possible combinations
of one-cold values.

cover_test_expr_all_
zeros

CORNER — Expression evaluated to the inactive state and the
inactive parameter was set to OVL_ALL_ZEROS.

cover_test_expr_all_
ones

CORNER — Expression evaluated to the inactive state and the
inactive parameter was set to OVL_ALL_ONES.

OVL Checkers
ovl_one_cold

Accellera Standard OVL V2 LRM, 2.8.1 229
March 2014

Cover Groups

none

Notes
1. By default, the ovl_one_cold assertion is pessimistic and the assertion fails if test_expr

is active and multiple bits are not 1 (i.e.equals 0, X, Z, etc.). However, if
OVL_XCHECK_OFF is set, the assertion fails if and only if test_expr is active and
multiple bits are 0.

See also

Examples
Example 1

Checks that sel_n is one-cold at each rising edge of clock.

ovl_one_hot ovl_zero_one_hot

ovl_one_cold #(

‘OVL_ERROR,
4,
‘OVL_ONE_COLD,
‘OVL_ASSERT,
“Error: sel_n not one-cold”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// width
// inactive (no inactive state)
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_sel_n_one_cold (

clock,
reset,
enable,
sel_n,
fire_valid_sel_n_one_cold);

// clock
// reset
// enable
// test_expr
// fire

clock

reset

sel_n

ONE_COLD Error: sel_n not one-cold

XXXX

test_expr contains X/Z value

1101 1011 1101 0111 1110 1111 0111 1011

Accellera Standard OVL V2 LRM, 2.8.1230

OVL Checkers
ovl_one_cold

March 2014

Example 2

Checks that sel_n is one-cold or inactive (4’b1111) at each rising edge of clock.

Example 3

ovl_one_cold #(

‘OVL_ERROR,
4,
‘OVL_ALL_ONES,
‘OVL_ASSERT,
“Error: sel_n not one-cold or inactive”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// width
// inactive
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_sel_n_one_cold (

clock,
reset,
enable,
sel_n,
fire_valid_sel_n_one_cold);

// clock
// reset
// enable
// test_expr
// fire

ovl_one_cold #(

‘OVL_ERROR,
4,
‘OVL_ALL_ZEROS,
‘OVL_ASSERT,
“Error: sel_n not one-cold”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// width
// inactive
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_sel_n_one_cold (

clock,
reset,
enable,
sel_n,
fire_valid_sel_n_one_cold);

// clock
// reset
// enable
// test_expr
// fire

clock

reset

sel_n

ONE_COLD

XXXX

test_expr contains X/Z value
Error: sel_n not one-cold or inactive

1111 1011 1101 1100 1110 1111 0111 1011

OVL Checkers
ovl_one_cold

Accellera Standard OVL V2 LRM, 2.8.1 231
March 2014

Checks that sel_n is one-cold or inactive (4’b0000) at each rising edge of clock.
clock

reset

sel_n

ONE_COLD Error: sel_n not one-cold or inactive

XXXX

test_expr contains X/Z value

0000 1011 1101 0111 1110 1111 0111 1011

Accellera Standard OVL V2 LRM, 2.8.1232

OVL Checkers
ovl_one_hot

March 2014

ovl_one_hot
Checks that the value of an expression is one-hot.

Syntax
ovl_one_hot

[#(severity_level, width, property_type, msg, coverage_level,
clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, test_expr, fire);

Parameters/Generics

Ports

Parameters/Generics:
severity_level
width
property_type
msg

coverage_level
clock_edge
reset_polarity
gating_type

Class: 1-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of the test_expr argument. Default: 32.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

ovl_one_hot

fire[OVL_FIRE_WIDTH-1:0]

test_expr[width-1:0]

clock reset enable

OVL Checkers
ovl_one_hot

Accellera Standard OVL V2 LRM, 2.8.1 233
March 2014

Description
The ovl_one_hot assertion checker checks the expression test_expr at each active edge of clock
to verify the expression evaluates to a one-hot value. A one-hot value has exactly one bit set to
1.

The checker is useful for verifying control circuits, for example, it can ensure that a finite-state
machine with one-hot encoding operates properly and has exactly one bit asserted high. In a
datapath circuit the checker can ensure that the enabling conditions for a bus do not result in bus
contention.

Assertion Checks

Implicit X/Z Checks

Cover Points

Cover Groups

none

Notes
1. By default, the ovl_one_hot assertion is optimistic and the assertion fails if test_expr is

zero or has multiple bits not set to 0 (i.e.equals 1, X, Z, etc.). However, if
OVL_XCHECK_OFF is set, the ONE_HOT assertion fails if and only if test_expr is
zero or has multiple bits that are 1.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

test_expr[width-1:0] Expression that should evaluate to a one-hot value on the active
clock edge.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

ONE_HOT Expression evaluated to zero or to a value with multiple bits set
to 1.

test_expr contains X or Z Expression value contained X or Z bits.

cover_test_expr_change SANITY — Expression has changed value.

cover_all_one_hots_
checked

CORNER — Expression evaluated to all possible combinations
of one-hot values.

Accellera Standard OVL V2 LRM, 2.8.1234

OVL Checkers
ovl_one_hot

March 2014

See also

Examples

Checks that sel is one-hot at each rising edge of clock.

ovl_one_cold ovl_zero_one_hot

ovl_one_hot #(

‘OVL_ERROR,
4,
‘OVL_ASSERT,
“Error: sel not one-hot”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// width
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_sel_one_hot (

clock,
reset,
enable,
sel,
fire_valid_sel_one_hot);

// clock
// reset
// enable
// test_expr
// fire

OVL Checkers
ovl_proposition

Accellera Standard OVL V2 LRM, 2.8.1 235
March 2014

ovl_proposition
Checks that the value of an expression is always combinationally TRUE.

Syntax
ovl_proposition

[#(severity_level, property_type, msg, coverage_level, clock_edge,
reset_polarity, gating_type)]

instance_name (reset, enable, test_expr, fire);

Parameters/Generics

Ports

Parameters/Generics:
severity_level
property_type
msg

coverage_level
clock_edge
reset_polarity
gating_type

Class: combinational assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

property_type Property type. Cannot be OVL_ASSUME for SVA and PSL
implementations. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Ignored parameter.

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

ovl_proposition

fire[OVL_FIRE_WIDTH-1:0]

test_expr

reset enable

Accellera Standard OVL V2 LRM, 2.8.1236

OVL Checkers
ovl_proposition

March 2014

Description
The ovl_proposition assertion checker checks the single-bit expression test_expr when it
changes value to verify the expression evaluates to TRUE.

Assertion Checks

Implicit X/Z Checks

Cover Points

none

Cover Groups

none

Notes
1. Formal verification tools and hardware emulation/acceleration systems might ignore this

checker. To verify propositional properties with these tools, consider using ovl_always.

2. The Verilog-95 version of this asynchronous checker handles ‘OVL_ASSERT,
‘OVL_ASSUME and ‘OVL_IGNORE. The SVA and PSL versions of this checker do
not implement property_type ‘OVL_ASSUME. The SVA version uses immediate
assertions and in IEEE 1800-2005 SystemVerilog immediate assertions cannot be
assumptions. Assume is only available in a concurrent (clocked) form of an assertion
statement. The SVA version treats ‘OVL_ASSUME as an ‘OVL_ASSERT. The PSL
version generates an error if property_type is ‘OVL_ASSUME.

See also

test_expr Expression that should always evaluate to TRUE.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

PROPOSITION Expression evaluated to FALSE.

test_expr contains X or Z Expression value was X or Z.

ovl_always
ovl_always_on_edge

ovl_implication
ovl_never

OVL Checkers
ovl_proposition

Accellera Standard OVL V2 LRM, 2.8.1 237
March 2014

Examples

Checks that current_addr equals addr while bus_gnt is TRUE.

ovl_proposition #(

‘OVL_ERROR,
‘OVL_ASSERT,
“Error: current_addr changed while bus
granted”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_current_addr (

bus_gnt,
enable,
current_addr == addr,
fire_valid_current_addr);

// reset
// enable
// test_expr
// fire

bus_gnt

addr

PROPOSITION Error: current_addr changed while bus granted

FFFF AA00

FFFF AA00current_addr AAF0

Accellera Standard OVL V2 LRM, 2.8.1238

OVL Checkers
ovl_quiescent_state

March 2014

ovl_quiescent_state
Checks that the value of a specified state expression equals a corresponding check value if a
specified sample event has transitioned to TRUE.

Syntax
ovl_quiescent_state

[#(severity_level, width, property_type, msg, coverage_level,
clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, state_expr, check_value,
sample_event, fire);

Parameters/Generics

Parameters/Generics:
severity_level
width
property_type
msg

coverage_level
clock_edge
reset_polarity
gating_type

Class: 2-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of the state_expr and check_value arguments. Default: 1.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

fire [OVL_FIRE_WIDTH-1:0]
sample_event

check_value[width-1:0]

ovl_quiescent_state
state_expr[width-1:0]

clock reset enable

OVL Checkers
ovl_quiescent_state

Accellera Standard OVL V2 LRM, 2.8.1 239
March 2014

Ports

Description
The ovl_quiescent_state assertion checker checks the expression sample_event at each active
edge of clock to see if its value has transitioned to TRUE (i.e., its current value is TRUE and its
value on the previous active edge of clock is not TRUE). If so, the checker verifies that the
current value of state_expr equals the current value of check_value. The assertion fails if
state_expr is not equal to check_value.

The state_expr and check_value expressions are verification events that can change. In
particular, the same assertion checker can be coded to compare different check values (if they
are checked in different cycles).

The checker is useful for verifying the states of state machines when transactions complete.

Assertion Checks

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

state_expr[width-1:0] Expression that should have the same value as check_value on
the rising edge of clock if sample_event has just transitioned to
TRUE (rising edge).

check_value[width-1:0] Expression that indicates the value state_expr should have on the
active edge of clock if sample_event has just transitioned to
TRUE (rising edge).

sample_event Expression that initiates the quiescent state check when its value
transitions to TRUE.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

QUIESCENT_STATE The sample_event expression transitioned to TRUE, but the
values of state_expr and check_value were not the same.

Accellera Standard OVL V2 LRM, 2.8.1240

OVL Checkers
ovl_quiescent_state

March 2014

Implicit X/Z Checks

Cover Points

none

Cover Groups

none

Notes
1. The assertion check compares the current value of sample_event with its previous value.

Therefore, checking does not start until the second rising edge of clock after reset
deasserts.

2. Checker recognizes the Verilog macro OVL_END_OF_SIMULATION=eos_signal. If
set, the quiescent state check is also performed at the end of simulation, when
eos_signal asserts (regardless of the value of sample_event).

3. Formal verification tools and hardware emulation/acceleration systems might ignore this
checker.

See also

state_expr contains X
or Z

State expression value contained X or Z bits.

check_value contains X
or Z

Check vale expression value contained X or Z bits.

sample_event contains
X or Z

Sample event value was X or Z.

OVL_END_OF_SIMULATION
contains X or Z

State expression value contained X or Z bits at the end of
simulation (OVL_END_OF_SIMULATION asserted).

ovl_no_transition ovl_transition

OVL Checkers
ovl_quiescent_state

Accellera Standard OVL V2 LRM, 2.8.1 241
March 2014

Examples

Checks that whenever end_of_transaction asserts at the completion of each transaction, the
value of transaction_state is ‘TR_IDLE (if prev_tr is ‘TR_READ) or ‘TR_WAIT (otherwise).

ovl_quiescent_state #(

‘OVL_ERROR,
4,
‘OVL_ASSERT,
“Error: illegal end of transaction”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// width
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_end_of_transaction_state (

clock,
reset,
enable,
transaction_state,
prev_tr == ‘TR_READ ? ‘TR_IDLE :‘TR_WAIT,
end_of_transaction,
fire_valid_end_of_transaction_state);

// clock
// reset
// enable
// state_expr
// check_value
// sample_event
// fire

clock

reset

transaction_state

QUIESCENT_STATE Error: illegal end of transaction

check_value

X ‘TR_READ ‘TR_IDLE ‘TR_IDLE

end_of_transaction

‘TR_WRITE ‘TR_READ

‘TR_IDLE ‘TR_WAIT‘TR_WAIT

Accellera Standard OVL V2 LRM, 2.8.1242

OVL Checkers
ovl_range

March 2014

ovl_range
Checks that the value of an expression is in a specified range.

Syntax
ovl_range

[#(severity_level, width, min, max, property_type, msg,
coverage_level, clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, test_expr, fire);

Parameters/Generics

Parameters/Generics:
severity_level
width
min
max
property_type

msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: 1-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of the test_expr argument. Default: 1.

min Minimum value allowed for test_expr. Default: 1.

max Maximum value allowed for test_expr. Default: 1.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

ovl_range

fire[OVL_FIRE_WIDTH-1:0]

test_expr[width-1:0]

clock reset enable

OVL Checkers
ovl_range

Accellera Standard OVL V2 LRM, 2.8.1 243
March 2014

Ports

Description
The ovl_range assertion checker checks the expression test_expr at each active edge of clock to
verify the expression falls in the range from min to max, inclusive. The assertion fails if
test_expr < min or max < test_expr.

The checker is useful for ensuring certain control structure values (such as counters and finite-
state machine values) are within their proper ranges. The checker is also useful for ensuring
datapath variables and expressions are in legal ranges.

Assertion Checks

Implicit X/Z Checks

Cover Points

Cover Groups

none

Errors

The parameters/generics min and max must be specified such that min is less than or equal to
max. Otherwise, the assertion fails on each tested clock cycle.

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

test_expr[width-1:0] Expression that should evaluate to a value in the range from min
to max (inclusive) on the active clock edge.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

RANGE Expression evaluated outside the range min to max.

test_expr contains X or Z Expression value contained X or Z bits.

cover_test_expr_change BASIC — Expression changed value.

cover_test_expr_at_min CORNER — Expression evaluated to min.

cover_test_expr_at_max CORNER — Expression evaluated to max.

Accellera Standard OVL V2 LRM, 2.8.1244

OVL Checkers
ovl_range

March 2014

See also

Examples

Checks that (sel_high - sel_low) is in the range 2 to 5 at each rising edge of clock.

ovl_always
ovl_implication

ovl_never
ovl_proposition

ovl_range #(

‘OVL_ERROR,
3,
2,
5,
‘OVL_ASSERT,
“Error: sel_high - sel_low not within 2 to 5”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// width
// min
// max
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_sel (

clock,
reset,
enable,
sel_high - sel_low,
fire_valid_sel);

// clock
// reset
// enable
// test_expr
// fire

clock

reset

sel_high - sel_low

RANGE Error: sel_high - sel_low not within 2 to 5

2 4 7 5 2X

OVL Checkers
ovl_reg_loaded

Accellera Standard OVL V2 LRM, 2.8.1 245
March 2014

ovl_reg_loaded
Checks that a register is loaded with source data within a specified time window.

Syntax
ovl_reg_loaded

[#(severity_level, width, start_count, end_count, property_type,
msg, coverage_level, clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, start_event, end_event, src_expr,
dest_expr, fire);

Parameters/Generics

Parameters/Generics:
severity_level
width
start_count
end_count
property_type

msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: event-bounded assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of the src_expr and dest_expr registers. Default: 4.

start_count Number of cycles after start_event asserts that the time window
opens. Default: 1.

end_count Number of cycles after start_event asserts that the time window
closes (if it is still open). If end_count is 0, only the end_event
signal is used to define the time windows. Default: 10.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

ovl_reg_loaded

fire [OVL_FIRE_WIDTH-1:0]start_event
end_event

src_expr[width-1:0]
dest_expr[width-1:0]

clock reset enable

Accellera Standard OVL V2 LRM, 2.8.1246

OVL Checkers
ovl_reg_loaded

March 2014

Ports

Description
The ovl_reg_loaded assertion checker checks start_event at each active edge of clock. If
start_event has just transitioned to TRUE, the checker evaluates the source register (src_expr)
and initiates a reg_loaded check to verify that this value gets loaded into the destination register
(dest_expr) in the specified time window.

If start_count is 0, the time window opens immediately. Otherwise, the time window opens
start_count cycles after the current cycle. The values of dest_expr in the cycles between the
start of the reg_loaded check and the time window opening are not relevant. When the time
window opens, the checker evaluates dest_expr and re-evaluates dest_expr each subsequent
cycle. Once the value of dest_expr equals the captured value of src_expr, the current reg_loaded
check terminates successfully. The time window closes when one of the following occur:

• The current cycle is end_count cycles after start_event asserted (end_count > 0).

• The end_event signal is TRUE.

If dest_expr has not loaded the src_expr value by the cycle the time window closes, a
reg_loaded violation occurs.

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

start_event Start event signal for the reg_loaded check. If the time window is
closed (or closing), the rising edge of start_event initiates a new
check. The time window opens start_count cycles later.

end_event End event signal for the reg_loaded check. If the time window is
open (or opening), the rising edge of end_event terminates the
current check, closes the window and issues a reg_loaded
violation (if dest_expr loaded the value of src_expr in that cycle,
the time window would be closing).

src_expr[width-1:0] Source register containing the values that load the dest_expr
register. For each reg_loaded check, the source value in src_expr
is sampled in the same cycle that start_event asserts.

dest_expr[width-1:0] Destination register for the values in src_expr.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

OVL Checkers
ovl_reg_loaded

Accellera Standard OVL V2 LRM, 2.8.1 247
March 2014

Assertion Checks

Implicit X/Z Checks

Cover Points

REG_LOADED Test expression did not equal the value of the source
register in the specified time window.

end_count > 0
Either end_event became TRUE or end_count cycles passed
after the rising edge of start_event and dest_expr was still not
equal to the captured value of src_expr (ignoring values of
dest_expr in the start_count cycles after start_event asserted).

Test expression did not equal the value of the source
expression in the time window that ended when
‘end_event’ asserted.

end_count = 0
End_event became TRUE after the rising edge of start_event
and dest_expr was still not equal to the captured value of
src_expr (ignoring values of dest_expr in the start_count
cycles after start_event asserted).

start_event contains X or Z Start event signal was X or Z.

end_event contains X or Z End event signal was X or Z.

src_expr contains X or Z Source expression contained X or Z bits.

dest_expr contains X or Z Test expression contained X or Z bits.

cover_values_checked SANITY — Number of times a reg_loaded check was initiated
(i.e., number of cycles start_event transitioned to TRUE).

cover_reg_loaded BASIC — Number of times a reg_loaded check was terminated
successfully (i.e, dest_expr was loaded with src_expr in the time
window).

cover_end_event_in_
window

BASIC — Number of time windows in which end_event asserted
(whether or not dest_expr loaded src_expr in the window). Not
meaningful if end_count = 0.

cover_no_end_event_in_
window

BASIC — Number of time windows in which end_event did not
assert (whether or not dest_expr loaded src_expr in the window).
Not meaningful if end_count = 0.

cover_load_at_start_
count

CORNER — Number of times dest_expr loaded src_expr exactly
start_count cycles after start_event asserted.

cover_load_at_end_
count

CORNER — Number of times dest_expr loaded the src_expr
value exactly end_count cycles after start_event asserted. Not
meaningful if end_count = 0.

Accellera Standard OVL V2 LRM, 2.8.1248

OVL Checkers
ovl_reg_loaded

March 2014

Cover Groups

cover_load_times STATISTIC — Reports the load times (in cycles from asserting
start_event to loading src_expr into dest_expr) that occurred at
least once.

observed_dest_expr_
reg_load_time

Number of times dest_expr was loaded in the specified number
of cycles. Bins are:
• observed_load_time_good[start_count+1:maximum] — bin

index is the observed load time in clock cycles. The value of
maximum is:
• start_count + 4095 (if end_count = 0) or
• end_count (if end_count > 0).

• observed_load_time_bad — default.

OVL Checkers
ovl_req_ack_unique

Accellera Standard OVL V2 LRM, 2.8.1 249
March 2014

ovl_req_ack_unique
Checks that every request receives a corresponding acknowledge in a specified time window.

Syntax
ovl_req_ack_unique

[#(severity_level, min_cks, max_cks, method, property_type, msg,
coverage_level, clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, req, ack, fire);

Parameters/Generics

Parameters/Generics:
severity_level
min_cks
max_cks
method
property_type

msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: n-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

min_cks Minimum number of clock cycles after req asserts that its
corresponding acknowledge can occur. Default: 1

max_cks Maximum number of clock cycles after req asserts that its
corresponding acknowledge can occur. Default: 15.

method Method used to track and correlate request/acknowledge pairs.
method = 0 (Default)

Method suitable for a short time window (max_cks ≤ 15).
Uses internal IDs for requests. For each request, generates
max_cks properties.

method = 1
Method suitable for a long time window (max_cks > 15).
Uses time stamps (computed mod 2 max_cks) to identify
requests. To process an acknowledge, the time stamp for the
request at the front of the queue is used to verify that the
acknowledge meets timing requirements.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

ovl_req_ack_unique

fire [OVL_FIRE_WIDTH-1:0]

req

ack

clock reset enable

Accellera Standard OVL V2 LRM, 2.8.1250

OVL Checkers
ovl_req_ack_unique

March 2014

Ports

Description
The ovl_req_ack_unique assertion checker checks req and ack at each active edge of clock. If
req is TRUE, a request becomes outstanding immediately. The checker tracks outstanding
requests on a first-in first-out basis to verify the specified request/acknowledge handshake
protocol is obeyed.

The protocol ensures each request has an acknowledgement that occurs in the time window that
opens min_cks after the request (i.e., when the request becomes outstanding) and closes
max_cks after the request. When ack is TRUE, the oldest outstanding request is checked. If this
request has not been outstanding for at least min_cks cycles, the ack is ignored. Otherwise, the
request is removed from the outstanding requests FIFO and “matched” with the current
acknowledge. The checker detects the following violations:

• If ack is TRUE and no requests are outstanding, a no_extraneous_ack violation occurs.

• If a request is not acknowledged in its time window, an ack_timeout violation occurs.

• If max_cks requests are outstanding, additional requests cannot become outstanding. If a
request occurs (without a simultaneous acknowledge), a max_outstanding_req violation
occurs and the request is ignored.

To help collect coverage data, the checker tracks individual requests and their
acknowledgements (up to the maximum outstanding requests limit, which is max_cks requests).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

req Request signal.

ack Acknowledgment signal.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

OVL Checkers
ovl_req_ack_unique

Accellera Standard OVL V2 LRM, 2.8.1 251
March 2014

But the larger max_cks is, the greater the decrease in performance. To resolve this problem, the
checker can be configured to a second method of tracking request/acknowledge pairs by setting
the method parameter to 1. However with this method, the checker does not collect some
coverage data.

Assertion Checks

Implicit X/Z Checks

Cover Points

NO_EXTRANEOUS_ACK Acknowledge received when no requests were
outstanding.

No requests were outstanding and ack was TRUE (and if
min_cks = 0, req was FALSE).

ACK_TIMEOUT Acknowledge not received in time window.
A request was pending for max_cks cycles and did not receive
its acknowledge in the last cycle of its time window.

MAX_OUTSTANDING_REQ Maximum number of requests were outstanding when an
additional request was issued.

Req was TRUE and ack was FALSE, but max_cks requests
were outstanding.

req contains X or Z Request signal was X or Z.

ack contains X or Z Acknowledge signal was X or Z.

cover_requests SANITY — Number of cycles req asserted.

cover_acknowledgements SANITY — Number of cycles ack asserted.

cover_ack_at_min_cks CORNER — Number of times acknowledge was received
min_cks cycles after its request was issued. Not meaningful if
method = 1.

cover_ack_at_max_cks CORNER — Number of times acknowledge was received
max_cks cycles after its request was issued. Not meaningful if
method = 1.

observed_ack_times STATISTIC — Reports the request-to-acknowledge times (in
cycles) that occurred at least once. Not meaningful if method = 1.

observed_outstanding_
requests

STATISTIC — Reports the number of cycles in which exactly
index requests become outstanding, for each index in the range
[0: max_cks] (except for index = 0, which counts all cycles that
no request was outstanding). Not meaningful if method = 1.

Accellera Standard OVL V2 LRM, 2.8.1252

OVL Checkers
ovl_req_ack_unique

March 2014

Cover Groups

observed_latency Number of acknowledgements with the specified req-to-ack
latency. Bins are:
• observed_latency_good[min_cks:max_cks] — bin index is

the observed latency in clock cycles.
• observed_latency_bad — default.

observed_outstanding_
requests

Number of cycles with the specified number of outstanding
requests. Bins are:
• observed_outstanding_requests[1:max_cks] — bin index is

the number of outstanding requests.

OVL Checkers
ovl_req_requires

Accellera Standard OVL V2 LRM, 2.8.1 253
March 2014

ovl_req_requires
Checks that every request event initiates a valid request-response event sequence that finishes
within a specified time window.

Syntax
ovl_req_requires

[#(severity_level, min_cks, max_cks, property_type, msg,
coverage_level, clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, req_trigger, req_follower,
resp_leader, resp_trigger, fire);

Parameters/Generics

Parameters/Generics:
severity_level
min_cks
max_cks
property_type

msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: n-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

min_cks Minimum number of clock cycles after req_trigger is TRUE that
the event sequence can finish. Value of min_cks must be > 0.
Default: 1.

max_cks Maximum number of clock cycles after req_trigger is TRUE that
the event sequence should finish. The special value 0 selects no
upper bound. If max_cks ≠ 0, then max_cks must be Š min_cks.
Default: 0.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

ovl_req_requires

fire [OVL_FIRE_WIDTH-1:0]req_trigger
req_follower

resp_leader
resp_trigger

clock reset enable

Accellera Standard OVL V2 LRM, 2.8.1254

OVL Checkers
ovl_req_requires

March 2014

Ports

Description
The ovl_req_requires assertion checker checks req_trigger at each active edge of clock. If
req_trigger is TRUE, a req_requires check is initiated. The checker verifies that a semaphore
request-response event sequence transpires with the last event occurring within the time
window specified by [max_cks:min_cks]. The event sequence must have the following
characteristics:

• When req_trigger is TRUE: req_follower, resp_leader, resp_trigger are TRUE in
sequence.

• Each event happens at the active clock edge at which the first occurrence of its signal is
TRUE following the previous event in the sequence.

• The sequence has the following timing relations:

treq_trigger ≤ treq_follower < tresp_leader ≤ tresp_trigger

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

req_trigger Request trigger signal. If req_trigger is TRUE, the checker
initiates a new check and its corresponding time window opens
min_cks cycles later.

req_follower Request follower signal. A request event finishes at the first
rising edge of req_follower in the same or subsequent cycle as
the rising edge of req_trigger.

resp_leader Response leader signal. The first rising edge of resp_leader in a
cycle after the request event initiates the response event.

resp_trigger Response trigger signal. The response event finishes at the first
rising edge of resp_trigger in the same or subsequent cycle as the
rising edge of resp_leader. This event must be in the time
window from min_cks to max_cks cycles after req_trigger was
TRUE.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

OVL Checkers
ovl_req_requires

Accellera Standard OVL V2 LRM, 2.8.1 255
March 2014

That is, the req_trigger and req_follower events can occur in the same cycle and the
resp_leader and resp_trigger events can occur in the same cycle, but the resp_leader
event must be after the req_follower event.

A req_requires check violation occurs if one of the following cases arises:

• The semaphore event sequence finishes before the [min_cks:max_cks] time window
opens.

• A cycle is reached at which the checker determines the semaphore event sequence
cannot finish within the [min_cks:max_cks] time window.

• The [min_cks:max_cks] time window closes, but the semaphore event sequence did not
finish.

The default value of max_cks is 0, which sets no upper bound for the time windows. In this case,
a req_requires violation occurs only when a sequence finishes before min_cks cycles after the
req_trigger event. The default value of min_cks is 1, so if both min_cks and max_cks are left set
to their defaults, the req_requires check cannot be violated.

Assertion Checks

Implicit X/Z Checks

Cover Points

REQ_REQUIRES A request-response event sequence started, but did
not finish when the specified time window was open.

max_cks > 0
Req_trigger was TRUE, so a request-response event
sequence started. But, either the sequence finished before
min_cks cycles, or it could not finish by max_cks cycles.

A request-response event sequence started, but it
finished before the specified time window opened.

max_cks = 0
Req_trigger was TRUE, so a request-response event
sequence started, but the sequence finished before min_cks
cycles.

req_trigger contains X or Z Request trigger was X or Z.

req_follower contains X or
Z

Request follower was X or Z.

resp_leader contains X or Z Response leader was X or Z.

resp_trigger contains X or
Z

Response trigger was X or Z.

Accellera Standard OVL V2 LRM, 2.8.1256

OVL Checkers
ovl_req_requires

March 2014

If overlapping request-response sequences are triggered, the coverage data might be inaccurate
because the cover group vectors do not reflect which responses belong to which requests.

Cover Groups

cover_requests SANITY — Number of cycles req_trigger was TRUE.

cover_request_
followers

BASIC — Number of times req_trigger was TRUE and
req_follower was TRUE in the same or subsequent cycle.

cover_response_leaders BASIC — Number of times req_trigger was TRUE;
req_follower was TRUE in the same or subsequent cycle; and
then resp_leader was TRUE in a subsequent cycle.

cover_req_requires BASIC — Number of valid request-response event sequences.

cover_resp_trigger_at_
min_cks

CORNER — Number of valid request-response event sequences
that finished in min_cks cycles.

cover_resp_trigger_at_
max_cks

CORNER — Number of valid request-response event sequences
that finished in max_cks cycles.

cover_req_trigger_to_
resp_trigger

STATISTIC — Reports the request-trigger to response-trigger
times (in cycles) that occurred at least once.

cover_req_trigger_to_
req_follower

STATISTIC — Reports the request-trigger to request-follower
times (in cycles) that occurred at least once.

cover_req_follower_to_
resp_leader

STATISTIC — Reports the request-follower to response-leader
times (in cycles) that occurred at least once.

cover_resp_leader_to_
resp_trigger

STATISTIC — Reports the response-leader to response-trigger
times (in cycles) that occurred at least once.

observed_latency_btw_
req_trigger_and_
resp_trigger

Number of requests with the specified request-trigger to
response-trigger latency. Bins are:
• observed_req_trigger_resp_trigger_latency_good

[min_cks:maximum] — bin index is the observed latency in
clock cycles from the request trigger to the response trigger.
The value of maximum is:
• 4095 (if max_cks = 0) or
• max_cks (if max_cks > 0).

• observed_req_trigger_resp_trigger_latency_bad — default.

OVL Checkers
ovl_req_requires

Accellera Standard OVL V2 LRM, 2.8.1 257
March 2014

observed_latency_btw_
req_trigger_and_
resp_follower

Number of requests with the specified request-trigger to
response-follower latency. Bins are:
• observed_req_trigger_resp_follower_latency_good

[0:maximum] — bin index is the observed latency in clock
cycles from the request trigger to the response follower. The
value of maximum is:
• 4095 (if max_cks = 0) or
• max_cks (if max_cks > 0).

• observed_req_trigger_resp_follower_latency_bad — default.

observed_latency_btw_
req_follower_and_
resp_leader

Number of requests with the specified request-follower to
response-leader latency. Bins are:
• observed_req_follower_resp_leader_latency_good

[1:maximum] — bin index is the observed latency in clock
cycles from the request follower to the response leader. The
value of maximum is:
• 4095 (if max_cks = 0) or
• max_cks (if max_cks > 0).

• observed_req_follower_resp_leader_latency_bad — default.

observed_latency_btw_
resp_leader_and_
resp_trigger

Number of requests with the specified response-leader to
response-trigger latency. Bins are:
• observed_resp_leader_resp_trigger_latency_good

[0:maximum] — bin index is the observed latency in clock
cycles from the response leader to the response trigger. The
value of maximum is:
• 4095 (if max_cks = 0) or
• max_cks (if max_cks > 0).

• observed_resp_leader_resp_trigger_latency_bad — default.

Accellera Standard OVL V2 LRM, 2.8.1258

OVL Checkers
ovl_stack

March 2014

ovl_stack
Checks the data integrity of a stack and checks that the stack does not overflow or underflow.

Syntax
ovl_stack

[#(severity_level, depth, width, high_water_mark, push_latency,
pop_latency, property_type, msg, coverage_level, clock_edge,
reset_polarity, gating_type)]

instance_name (clock, reset, enable, push, push_data, pop, pop_data,
full, empty, fire);

Parameters/Generics

Parameters/Generics:
severity_level
width
depth
push_latency
pop_latency
high_water_mark

property_type
msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: n-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of a data item. Default: 1.

depth Stack depth. The depth must be > 0. Default: 2.

push_latency Latency for push operation.
push_latency = 0 (Default)

Value of push_data is valid and the push operation is
performed in the same cycle push asserts.

push_latency > 0
Value of push_data is valid and the push operation is
performed push_latency cycles after push asserts.

pop_latency Latency for pop operation.
pop_latency = 0 (Default)

Value of pop_data is valid and the pop operation is
performed in the same cycle pop asserts.

pop_latency > 0
Value of pop_data is valid and the pop operation is
performed pop_latency cycles after pop asserts.

high_water_mark Stack high-water mark. Must be < depth. A value of 0 disables
the cover_high_water_mark cover point. Default: 0.

fire [OVL_FIRE_WIDTH-1:0]

push
pop
full
empty

pop_data[width-1:0]

ovl_stack
push_data[width-1:0]

clock reset enable

OVL Checkers
ovl_stack

Accellera Standard OVL V2 LRM, 2.8.1 259
March 2014

Ports

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

push Stack push input. When push asserts, the stack performs a push
operation. A data item is pushed onto the stack and the stack
counter increments by 1. If push_latency is 0, the push is
performed in the same cycle push asserts. Otherwise
push_latency cycles later, push_data is latched, the push
operation occurs, and the stack counter increments.

push_data[width-1:0] Push data input to the stack. Contains the data item to push onto
the stack.

pop Stack pop input. When pop asserts, the stack performs a pop
operation. A data item is popped from the stack and the stack
counter decrements by 1. If deq_latency is 0, the pop is
performed in the same cycle pop asserts. Otherwise enq_latency
cycles later, the pop operation occurs, the stack counter
decrements, and pop_data is valid.

pop_data[width-1:0] Pop data output from the stack. Contains the data item popped
from the stack.

full Output status flag from the stack.
full = 0

Stack not full.
full = 1

Stack full.

Accellera Standard OVL V2 LRM, 2.8.1260

OVL Checkers
ovl_stack

March 2014

Description
The ovl_stack checker checks push and pop at the active edge of clock. If push is TRUE, the
checker assumes a push operation occurs push_latency cycles later (or in the same cycle if
push_latency is 0). In that cycle, the checker does the following:

• If a pop operation is scheduled for this cycle, a simultaneous_push_pop check violation
occurs.

• Otherwise, if the stack is already full, an overflow check violation occurs. The checker
assumes the data item in push_data was latched in the current cycle and replaced the top
entry.

• Otherwise, the checker assumes the data item in push_data was latched in the current
cycle and pushed on the top of the stack. The checker increments the stack counter by 1
in the next cycle.

Similarly, if pop is TRUE, the checker assumes a pop operation occurs pop_latency cycles later
(or in the same cycle if pop_latency is 0). In that cycle, unless a simultaneous_push_pop
violation has occurred, the checker does the following:

• If the stack is already empty, an underflow check violation occurs.

• Otherwise, the checker assumes the data item on the top of the stack was popped and
compares the value of pop_data with the expected value of the popped data item. If they
do not match, a value check violation occurs. The checker decrements the stack counter
by 1 in the next cycle.

The ovl_stack checker also checks full and empty at the active edge of clock. After the stack
pointer is adjusted to reflect a push or pop performed in the previous cycle:

• If the stack is full and full is FALSE or if the stack is not full and full is TRUE, a full
check violation occurs.

• If the stack is empty and empty is FALSE or if the stack is not empty and empty is
TRUE, an empty check violation occurs.

empty Output status flag from the stack.
empty = 0

Stack not empty.
empty = 1

Stack empty.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

OVL Checkers
ovl_stack

Accellera Standard OVL V2 LRM, 2.8.1 261
March 2014

 Assertion Checks

Implicit X/Z Checks

Cover Points

OVERFLOW Data pushed onto stack when the stack was full.
Stack had depth data items push_latency cycles after push
was sampled TRUE.

UNDERFLOW Data popped from stack when the stack was empty.
Stack was empty pop_latency cycles after pop was sampled
TRUE.

SIMULTANEOUS_PUSH_POP Push and pop operations occurred together.
A push operation and a pop operation were both scheduled
for the same cycle.

VALUE Data value popped from the stack did not match the
corresponding data value pushed onto the stack.

Pop was sampled TRUE, but pop_latency cycles later the
value of pop_data did not equal the expected value pushed
onto the stack in a previous cycle.

FULL Stack was empty, but ‘empty’ was deasserted.
Empty was sampled FALSE when the stack was empty.

Stack was not empty, but ‘empty’ was asserted.
Empty was sampled TRUE when the stack was not empty.

EMPTY Stack was full, but ‘full’ was deasserted.
Full was sampled FALSE when the stack was full.

Stack was not full, but ‘full’ was asserted.
Full was sampled TRUE when the stack was not full.

push contains X or Z Push signal was X or Z.

pop contains X or Z Pop signal was X or Z.

push_data contains X or Z Push data contained X or Z bits.

pop_data contains X or Z Pop data contained X or Z bits.

full contains X or Z Full signal was X or Z.

empty contains X or Z Empty signal was X or Z.

cover_pushes SANITY — Number of cycles push was asserted.

cover_pops SANITY — Number of cycles pop was asserted.

cover_max_entries BASIC — Number of cycles for which the number of data items
in the stack was the same as the maximum number of data items
the stack had held up to and including that cycle.

cover_push_then_pop BASIC — Number of times a push was followed by a pop
without an intervening push (or pop).

Accellera Standard OVL V2 LRM, 2.8.1262

OVL Checkers
ovl_stack

March 2014

Cover Groups

none

cover_full CORNER — Number of times a push incremented the stack
pointer to depth data items.

cover_empty CORNER — Number of times a pop decremented the stack
pointer to 0 data items.

cover_high_water_mark CORNER — Number of times the stack had more data items
than the specified high_water_mark. Not meaningful if
high_water_mark is 0.

OVL Checkers
ovl_time

Accellera Standard OVL V2 LRM, 2.8.1 263
March 2014

ovl_time
Checks that the value of an expression remains TRUE for a specified number of cycles after a
start event.

Syntax
ovl_time

[#(severity_level, num_cks, action_on_new_start, property_type,
msg, coverage_level, clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, start_event, test_expr, fire);

Parameters/Generics

Parameters/Generics:
severity_level
num_cks
action_on_new_start
property_type

msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: n-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

num_cks Number of cycles after start_event is TRUE that test_expr must
be held TRUE. Default: 1.

action_on_new_start Method for handling a new start event that occurs while a check
is pending. Values are: OVL_IGNORE_NEW_START,
OVL_RESET_ON_NEW_START and
OVL_ERROR_ON_NEW_START. Default:
OVL_IGNORE_NEW_START.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

ovl_time

fire[OVL_FIRE_WIDTH-1:0]

start_event

test_expr

clock reset enable

Accellera Standard OVL V2 LRM, 2.8.1264

OVL Checkers
ovl_time

March 2014

Ports

Description
The ovl_time assertion checker checks the expression start_event at each active edge of clock to
determine whether or not to initiate a check. Once initiated, the check evaluates test_expr each
subsequent active edge of clock for num_cks cycles to verify that the value of test_expr is
TRUE. During that time, the assertion fails the first cycle a sampled value of test_expr is not
TRUE.

The method used to determine what constitutes a start event for initiating a check is controlled
by the action_on_new_start parameter. If no check is in progress when start_event is sampled
TRUE, a new check is initiated. But, if a check is in progress when start_event is sampled
TRUE, the checker has the following actions:

• OVL_IGNORE_NEW_START

The checker does not sample start_event for the next num_cks cycles after a start event.

• OVL_RESET_ON_NEW_START

The checker samples start_event every cycle. If a check is pending and the value of
start_event is TRUE, the checker terminates the check (no violation occurs even if
test_expr has changed to FALSE) and initiates a new check starting in the next cycle.

• OVL_ERROR_ON_NEW_START

The checker samples start_event every cycle. If a check is pending and the value of
start_event is TRUE, the assertion fails with an illegal start event violation. In this case,

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

start_event Expression that (along with num_cks) identifies when to check
test_expr.

test_expr Expression that should evaluate to TRUE for num_cks cycles
after start_event initiates a check.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

OVL Checkers
ovl_time

Accellera Standard OVL V2 LRM, 2.8.1 265
March 2014

the checker does not initiate a new check, does not terminate a pending check and
reports an additional assertion violation if test_expr is FALSE.

Assertion Checks

Implicit X/Z Checks

Cover Points

Cover Groups

none

See also

TIME The value of test_expr was not TRUE within num_cks cycles
after start_event was sampled TRUE.

illegal start event The action_on_new_start parameter is set to
OVL_ERROR_ON_NEW_START and start_event expression
evaluated to TRUE while the checker was monitoring test_expr.

test_expr contains X or Z Expression value was X or Z.

start_event contains X or Z Start event value was X or Z.

cover_window_open BASIC — A time check was initiated.

cover_window_close BASIC — A time check lasted the full num_cks cycles.

cover_window_resets CORNER — The action_on_new_start parameter is
OVL_RESET_ON_NEW_START, and start_event was sampled
TRUE while the checker was monitoring test_expr.

ovl_change
ovl_next
ovl_frame
ovl_unchange

ovl_win_change
ovl_win_unchange
ovl_window

Accellera Standard OVL V2 LRM, 2.8.1266

OVL Checkers
ovl_time

March 2014

Examples
Example 1

Checks that ptr is sampled in the range 1 to 3 for three cycles after req is sampled equal to 1 at
the rising edge of clock. If req is sampled equal to 1 when the checker samples ptr, a new check
is not initiated (i.e., the new start is ignored).

ovl_time #(

‘OVL_ERROR,
3,
‘OVL_IGNORE_NEW_START,
‘OVL_ASSERT,
“Error: invalid transaction”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// num_cks
// action_on_new_start
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_transaction (

clock,
reset,
enable,
req == 1,
ptr >= 1 && ptr <= 3,
fire_valid_transaction);

// clock
// reset
// enable
// start_event
// test_expr
// fire

clock

reset

ptr

TIME Error: invalid transaction

X 0

req == 1

3 2 1 0 2 1 0

ptr >= 1 && ptr <= 3

x x x x x

x start events ignored

OVL Checkers
ovl_time

Accellera Standard OVL V2 LRM, 2.8.1 267
March 2014

Example 2

Checks that ptr is sampled in the range 1 to 3 for three cycles after req is sampled equal to 1 at
the rising edge of clock. If req is sampled equal to 1 when the checker samples ptr, a new check
is initiated (i.e., the new start restarts a check).

ovl_time #(

‘OVL_ERROR,
3,
‘OVL_RESET_ON_NEW_START,
‘OVL_ASSERT,
“Error: invalid transaction”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// num_cks
// action_on_new_start
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_transaction (

clock,
reset,
enable,
req == 1,
ptr >= 1 && ptr <= 3,
fire_valid_transaction);

// clock
// reset
// enable
// start_event
// test_expr
// fire

clock

reset

ptr

TIME Error: invalid transaction

X 0

req == 1

3 2 0 2 1 0

ptr >= 1 && ptr <= 3

x x x

x start events reset time check

x

Accellera Standard OVL V2 LRM, 2.8.1268

OVL Checkers
ovl_time

March 2014

Example 3

Checks that ptr is sampled in the range 1 to 3 for three cycles after req is sampled equal to 1 at
the rising edge of clock. If req is sampled equal to 1 when the checker samples ptr, the checker
issues an illegal start event violation and does not start a new check.

ovl_time #(

‘OVL_ERROR,
3,
‘OVL_ERROR_ON_NEW_START,
‘OVL_ASSERT,
“Error: invalid transaction”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// num_cks
// action_on_new_start
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_transaction (

clock,
reset,
enable,
req == 1,
ptr >= 1 && ptr <= 3,
fire_valid_transaction);

// clock
// reset
// enable
// start_event
// test_expr
// fire

clock

reset

ptr

illegal start event

X 0

req == 1

3 2 2 1 0

ptr >= 1 && ptr <= 3

1 3

no violation

OVL Checkers
ovl_transition

Accellera Standard OVL V2 LRM, 2.8.1 269
March 2014

ovl_transition
Checks that the value of an expression transitions properly from a start state to the specified
next state.

Syntax
ovl_transition

[#(severity_level, width, property_type, msg, coverage_level,
clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, test_expr, start_state,
next_state, fire);

Parameters/Generics

Parameters/Generics:
severity_level
width
property_type
msg

coverage_level
clock_edge
reset_polarity
gating_type

Class: 2-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of the test_expr argument. Default: 1.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

fire [OVL_FIRE_WIDTH-1:0]
test_expr[width-1:0]

next_state[width-1:0]

ovl_transition
start_state[width-1:0]

clock reset enable

Accellera Standard OVL V2 LRM, 2.8.1270

OVL Checkers
ovl_transition

March 2014

Ports

Description
The ovl_transition assertion checker checks the expression test_expr and start_state at each
active edge of clock to see if they are the same. If so, the checker evaluates and stores the
current value of next_state. At the next active edge of clock, the checker re-evaluates test_expr
to see if its value equals the stored value of next_state. If not, the assertion fails. The checker
returns to checking start_state in the current cycle (unless a fatal failure occurred)

The start_state and next_state expressions are verification events that can change. In particular,
the same assertion checker can be coded to verify multiple types of transitions of test_expr.

The checker is useful for ensuring certain control structure values (such as counters and finite-
state machine values) transition properly.

Assertion Checks

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

test_expr[width-1:0] Expression that should transition to next_state on the active edge
of clock if its value at the previous active edge of clock is the
same as the current value of start_state.

start_state[width-1:0] Expression that indicates the start state for the assertion check. If
the start state matches the value of test_expr on the previous
active edge of clock, the check is performed.

next_state[width-1:0] Expression that indicates the only valid next state for the
assertion check. If the value of test_expr was start_state at the
previous active edge of clock, then the value of test_expr should
equal next_state on the current active edge of clock.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

TRANSITION Expression transitioned from start_state to a value different from
next_state.

OVL Checkers
ovl_transition

Accellera Standard OVL V2 LRM, 2.8.1 271
March 2014

Implicit X/Z Checks

Cover Points

Cover Groups

none

Notes
1. The assertion check compares the current value of test_expr with its previous value.

Therefore, checking does not start until the second rising edge of clock after reset
deasserts.

See also

Examples

Checks that count transitions from 3’d3 properly. If sel_8 is 0, count should have transitioned to
3’d0. Otherwise, count should have transitioned to 3’d4.

test_expr contains X or Z Expression value contained X or Z bits.

start_state contains X or Z Start state value contained X or Z bits.

next_state contains X or Z Next state value contained X or Z bits.

cover_start_state BASIC — Expression assumed a start state value.

ovl_no_transition

ovl_transition #(

‘OVL_ERROR,
3,
‘OVL_ASSERT,
“Error: bad count transition”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// width
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_count (

clock,
reset,
enable,
count,
3’d3,
(sel_8 == 1’b0) ? 3’d0 : 3’d4,
fire_valid_count);

// clock
// reset
// enable
// test_expr
// start_state
// next_state
// fire

Accellera Standard OVL V2 LRM, 2.8.1272

OVL Checkers
ovl_transition

March 2014

clock

reset

count

TRANSITION Error: bad count transition

X

sel_8

(sel_8 == 1’b0) ? 3’d0 : 3’d4

0 1 2 3 0 1 2 0 2 33 1

0 4

OVL Checkers
ovl_unchange

Accellera Standard OVL V2 LRM, 2.8.1 273
March 2014

ovl_unchange
Checks that the value of an expression does not change for a specified number of cycles after a
start event initiates checking.

Syntax
ovl_unchange

[#(severity_level, width, num_cks, action_on_new_start,
property_type, msg, coverage_level, clock_edge, reset_polarity,
gating_type)]

instance_name (clock, reset, enable, start_event, test_expr, fire);

Parameters/Generics

Parameters/Generics:
severity_level
width
num_cks
action_on_new_start
property_type

msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: n-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of the test_expr argument. Default: 1.

num_cks Number of cycles test_expr should remain unchanged after a start
event. Default: 1.

action_on_new_start Method for handling a new start event that occurs before
num_cks clock cycles transpire without a change in the value of
test_expr. Values are: OVL_IGNORE_NEW_START,
OVL_RESET_ON_NEW_START and
OVL_ERROR_ON_NEW_START. Default:
OVL_IGNORE_NEW_START.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

ovl_unchange

fire[OVL_FIRE_WIDTH-1:0]

start_event

test_expr[width-1:0]

clock reset enable

Accellera Standard OVL V2 LRM, 2.8.1274

OVL Checkers
ovl_unchange

March 2014

Ports

Description
The ovl_unchange assertion checker checks the expression start_event at each active edge of
clock to determine if it should check for a change in the value of test_expr. If start_event is
sampled TRUE, the checker evaluates test_expr and re-evaluates test_expr at each of the
subsequent num_cks active edges of clock. Each time the checker re-evaluates test_expr, if its
value has changed from its value in the previous cycle, the assertion fails.

The method used to determine how to handle a new start event, when the checker is in the state
of checking for a change in test_expr, is controlled by the action_on_new_start parameter. The
checker has the following actions:

• OVL_IGNORE_NEW_START

The checker does not sample start_event for the next num_cks cycles after a start event.

• OVL_RESET_ON_NEW_START

The checker samples start_event every cycle. If a check is pending and the value of
start_event is TRUE, the checker terminates the pending check (no violation occurs
even if test_expr has changed in the current cycle) and initiates a new check with the
current value of test_expr.

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

start_event Expression that (along with action_on_new_start) identifies
when to start checking test_expr.

test_expr[width-1:0] Expression that should not change value for num_cks cycles from
the start event unless the check is interrupted by a valid new start
event.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

OVL Checkers
ovl_unchange

Accellera Standard OVL V2 LRM, 2.8.1 275
March 2014

• OVL_ERROR_ON_NEW_START

The checker samples start_event every cycle. If a check is pending and the value of
start_event is TRUE, the assertion fails with an illegal start event violation. In this case,
the checker does not initiate a new check and does not terminate a pending check.

The checker is useful for ensuring proper changes in structures after various events. For
example, it can be used to check that multiple-cycle operations with enabling conditions
function properly with the same data. It can be used to check that single-cycle operations
function correctly with data loaded at different cycles. It also can be used to verify
synchronizing conditions that require date to be stable after an initial triggering event.

Assertion Checks

Implicit X/Z Checks

Cover Points

Cover Groups

none

UNCHANGE The test_expr expression changed value within num_cks cycles
after start_event was sampled TRUE.

illegal start event The action_on_new_start parameter is set to
OVL_ERROR_ON_NEW_START and start_event expression
evaluated to TRUE while the checker was in the state of checking
for a change in the value of test_expr.

test_expr contains X or Z Expression value contained X or Z bits.

start_event contains X or Z Start event value was X or Z.

cover_window_open BASIC — A change check was initiated.

cover_window_close BASIC — A change check lasted the full num_cks cycles.

cover_window_resets CORNER — The action_on_new_start parameter is
OVL_RESET_ON_NEW_START, and start_event was sampled
TRUE while the checker was monitoring test_expr without
detecting a changed value.

Accellera Standard OVL V2 LRM, 2.8.1276

OVL Checkers
ovl_unchange

March 2014

See also

Examples
Example 1

Checks that a remains unchanged while a divide operation is performed (8 cycles). Restarts
during divide operations are ignored.

ovl_change
ovl_time
ovl_win_change

ovl_win_unchange
ovl_window

 ovl_unchange #(

‘OVL_ERROR,
8,
8,
‘OVL_IGNORE_NEW_START,
‘OVL_ASSERT,
“Error: a changed during divide”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// width
// num_cks
// action_on_new_start
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_div_unchange_a (

clock,
reset,
enable,
start == 1,
a,
fire_valid_div_unchange_a);

// clock
// reset
// enable
// start_event
// test_expr
// fire

clock

reset

a

UNCHANGE Error: a changed during divide

31

start == 1

170

x ignored start events

x
1 2 3 4 5 6

OVL Checkers
ovl_unchange

Accellera Standard OVL V2 LRM, 2.8.1 277
March 2014

Example 2

Checks that a remains unchanged while a divide operation is performed (8 cycles). A restart
during a divide operation starts the check over.

 ovl_unchange #(

‘OVL_ERROR,
8,
8,
‘OVL_RESET_ON_NEW_START,
‘OVL_ASSERT,
“Error: a changed during divide”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// width
// num_cks
// action_on_new_start
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_div_unchange_a (

clock,
reset,
enable,
start == 1,
a,
fire_valid_div_unchange_a);

// clock
// reset
// enable
// start_event
// test_expr
// fire

clock

reset

a

UNCHANGE Error: a changed during divide

31

start == 1

170

1 2 3 4 5 6

x start events reset unchange check

x

Accellera Standard OVL V2 LRM, 2.8.1278

OVL Checkers
ovl_unchange

March 2014

Example 3

Checks that a remains unchanged while a divide operation is performed (8 cycles). A restart
during a divide operation is a violation.

 ovl_unchange #(

‘OVL_ERROR,
8,
8,
‘OVL_ERROR_ON_NEW_START,
‘OVL_ASSERT,
“Error: a changed during divide”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// width
// num_cks
// action_on_new_start
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_div_unchange_a (

clock,
reset,
enable,
start == 1,
a,
fire_valid_div_unchange_a);

// clock
// reset
// enable
// start_event
// test_expr
// fire

clock

reset

a

UNCHANGE Error: a changed during divide

31

start == 1

170

illegal start event

OVL Checkers
ovl_valid_id

Accellera Standard OVL V2 LRM, 2.8.1 279
March 2014

ovl_valid_id
Checks that each issued ID is returned within a specified time window; that returned IDs match
issued IDs; and that the issued and outstanding IDs do not exceed specified limits.

Syntax
ovl_valid_id

[#(severity_level, min_cks, max_cks, width, max_id_instances,
max_ids, max_instances_per_id, instance_count_width,
property_type, msg, coverage_level, clock_edge, reset_polarity,
gating_type)]

instance_name (clock, reset, enable, issued, issued_id, returned,
returned_id, flush, flush_id, issued_count, fire);

Parameters/Generics

Parameters/Generics:
severity_level
width
min_cks
max_cks
max_id_instances
max_ids
max_instances_per_id

instance_count_width
property_type
msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: n-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of the issued_id, returned_id and flush_id. Default: 2.

min_cks Minimum number of clock cycles an ID instance must be
outstanding. Must be > 0. Default: 1

max_cks Maximum number of clock cycles an ID instance can be
outstanding. Must be ≥ min_cks. Default: 1.

max_id_instances Maximum number of ID instances that can be outstanding at any
time. Default: 2.

max_ids Maximum number of different IDs that can be outstanding at any
time. Default: 1.

max_instances_per_id Maximum number of instances of a single ID that can be
outstanding at any time. Default: 1.

instance_count_width Width of issued_count. Default: 2.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

fire [OVL_FIRE_WIDTH-1:0]

issued
issued_count[instance_count_width-1:0]
returned
flush

returned_id[width-1:0]

ovl_valid_id
issued_id[width-1:0]

flush_id[width-1:0]
clock reset enable

Accellera Standard OVL V2 LRM, 2.8.1280

OVL Checkers
ovl_valid_id

March 2014

Ports

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

issued Issued IDs signal indicating the ID in issued_id is added to the
outstanding IDs list. The issued_count port specifies the number
of instances of the ID to make outstanding.

issued_id[width-1:0] Expression or variable containing the ID to add to the
outstanding IDs list if issued is TRUE.

returned Returned ID signal indicating an instance of the ID in
returned_id is removed from the outstanding IDs list.

returned_id[width-1:0] Expression or variable containing the ID of an instance returned
and removed from the outstanding IDs list if returned is TRUE.

flush Flush ID signal indicating all instances of the ID in flush_id are
removed from the outstanding IDs list.

flush_id[width-1:0] Expression or variable containing the ID to flush if flush is
TRUE. All instances of the ID are removed from the outstanding
IDs list.

issued_count
[instance_count_width-
1:0]

Number of instances of the issued ID to make outstanding when
issued asserts.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

OVL Checkers
ovl_valid_id

Accellera Standard OVL V2 LRM, 2.8.1 281
March 2014

Description
The ovl_valid_id assertion checker checks flush, returned and issued at each active edge of
clock and performs the following sequence of operations using an internal scratch pad of
outstanding IDs:

1. If flush is TRUE, the ID specified in flush_id is compared to the outstanding IDs. All
instances (if any) of the flush ID are removed from the list of outstanding IDs. If
returned is TRUE and flush_id = returned_id, the returned instance is ignored (even if it
was not previously outstanding or was outstanding longer that max_cks). If issued is
TRUE and flush_id = issued_id, the issued ID instances are flushed as well (even if one
of the outstanding IDs, instances or instances-per-ID limits for the issued ID instance
were reached).

2. If returned is TRUE and the ID in returned_ID is not being flushed:

a. If an instance of the returned ID is outstanding, the longest-outstanding instance of
the returned ID is removed from the list of outstanding ID instances. If that ID
instance was outstanding for fewer than min_cks cycles, a min_cks violation occurs.

b. If no instance of the returned ID is outstanding, a returned_id violation occurs. Even
if an instance of the returned ID were issued in the same cycle, all ID instances must
be outstanding for min_cks cycles (and min_cks must be Š 1). In particular, the same
ID instance cannot be issued and returned in the same cycle.

3. If issued is TRUE and issued_count is 0, an issued_count violation occurs.

4. If issued is TRUE and issued_count > 0, then:

a. If the current number of unique outstanding IDs is max_ids and issued_id is not one
of them, a max_instances violation occurs.

b. If the current number of outstanding ID instances plus issued_count exceeds
max_id_instances, a max_ids violation occurs.

c. If the current number of outstanding instances of the issued ID plus issued_count
exceeds max_instances_per_id, a max_instances_per_id violation occurs.

d. If the none of these violations occur, issued_count instances of the ID in issued_id
are added to the list of outstanding ID instances.

5. After flushing and returning IDs, if any IDs have been outstanding for max_cks cycles, a
max_cks violation occurs in the next cycle.

Assertion Checks

RETURNED_ID Returned ID not outstanding.
Returned is TRUE, but the list of outstanding ID instances
does not contain an instance of returned_ID.

Accellera Standard OVL V2 LRM, 2.8.1282

OVL Checkers
ovl_valid_id

March 2014

Implicit X/Z Checks

Cover Points

MAX_CKS ID instance outstanding for too many cycles.
An ID instance was outstanding longer than max_cks cycles.

MIN_CKS ID instance returned in too few cycles.
Returned is TRUE and an instance of the ID in returned_id is
outstanding, but the longest-outstanding instance of the ID
has been outstanding for fewer than min_cks cycles.

MAX_IDS Maximum number of outstanding IDs or ID instances exceeded.
Issued is TRUE, but the number of outstanding instances plus
issued_count (minus 1 if an instance of issued_id is returned
without error) exceeds max_id_instances or the number of
unique outstanding IDs plus issued_count (minus 1 if an
instance of issued_id is returned without error) exceeds
max_ids.

MAX_INSTANCES_PER_ID Maximum number of outstanding ID instances for the issued ID
exceeded.

Issued is TRUE, but the number of outstanding instances of
issued_id plus issued_count (minus 1 if an instance of
issued_id is returned without error) exceeds
max_instances_per_id.

ISSUED_COUNT ID issued with count 0.
Issued is TRUE, but issued_count is 0.

issued contains X or Z Issued signal was X or Z.

returned contains X or Z Returned signal was X or Z.

flush contains X or Z Flush signal was X or Z.

issued_id contains X or Z
when issued is asserted

Issued ID contained X or Z bits.

ret_id contains X or Z
when returned is asserted

Returned ID contained X or Z bits.

flush_id contains X or Z
when flush is asserted

Flush ID contained X or Z bits.

cover_issued_asserted SANITY — Number of cycles issued was TRUE.

cover_returned_
asserted

SANITY — Number of cycles returned was TRUE.

cover_flush_asserted SANITY — Number of cycles flush was TRUE.

turnaround_times BASIC — Reports the turnaround times (i.e., number of cycles
after an ID instance is issued that the instance is returned) that
occurred at least once.

OVL Checkers
ovl_valid_id

Accellera Standard OVL V2 LRM, 2.8.1 283
March 2014

Cover Groups

outstanding_ids BASIC — Reports the numbers of outstanding ID instances that
occurred at least once.

cover_returned_at_min_
cks

CORNER — Number of times the returned ID instance was
outstanding for min_cks cycles.

cover_returned_at_max_
cks

CORNER — Number of times the returned ID instance was
outstanding for max_cks cycles.

cover_max_ids CORNER — Number of cycles the outstanding IDs reached the
max_ids limit or the max_id_instances limit.

cover_max_instances_
per_id

CORNER — Number of cycles the outstanding instances of an
ID reached the max_instances_per_id limit.

observed_latency Number of returned IDs with the specified turnaround time. Bins
are:
• observed_latency_good[min_cks:max_cks] — bin index is

the observed turnaround time in clock cycles.
• observed_latency_bad — default.

outstanding_ids Number of cycles with the specified number of outstanding ids.
Bins are:
• observed_outstanding_ids[0:max_id_instances] — bin index

is the instance ID.

Accellera Standard OVL V2 LRM, 2.8.1284

OVL Checkers
ovl_value

March 2014

ovl_value
Checks that the value of an expression either matches a value in a specified list or does not
match any value in the list (as determined by a mode signal).

Syntax
ovl_value

[#(severity_level, num_values, width, property_type, msg,
coverage_level, clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, test_expr, vals, disallow, fire);

Parameters/Generics

Parameters/Generics:
severity_level
num_values
width
property_type

msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: 1-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

num_values Number of values in vals. Must be ≥ 1. Default: 1.

width Width of test_expr. Default: 1.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

ovl_value

fire [OVL_FIRE_WIDTH-1:0]
test_expr[width-1:0]
disallow

vals[num_values*width-1:0]

clock reset enable

OVL Checkers
ovl_value

Accellera Standard OVL V2 LRM, 2.8.1 285
March 2014

Ports

Description
The ovl_value assertion checker checks test_expr, vals and disallow at each active edge of clock
(except for the first cycle after a checker reset). The value of test_expr is compared with the list
of values in vals. If disallow is FALSE and the value of test_expr is not a value in vals, a value
check violation occurs. Similarly, if disallow is TRUE and the value of test_expr is one of the
values in vals, an is_not check violation occurs. The check occurs at the active clock edge, .

Assertion Checks

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

test_expr[width-1:0] Variable or expression to check.

vals
[num_values*width-1:0]

Concatenated list of values for test_expr.

disallow Sense of the comparison of test_expr with vals.
disallow = 0

Value of test_expr should match one of the values in vals.
disallow = 1

Value of test_expr should not match one of the values in vals.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

VALUE Expression value did not equal one of the specified
values.

Value of the test_expr did not match a value in vals, but
disallow was FALSE.

IS_NOT Expression value was equal to one of the specified values.
Value of the test_expr matched one of the values in vals, but
disallow was TRUE.

Accellera Standard OVL V2 LRM, 2.8.1286

OVL Checkers
ovl_value

March 2014

Implicit X/Z Checks

Cover Points

Cover Groups

none

test_expr contains X or Z Expression contained X or Z bits.

vals contains X or Z Values contained X or Z bits.

disallow contains X or Z Disallow signal was X or Z.

cover_values_checked SANITY — Number of cycles test_expr loaded a new value.

cover_in_vals BASIC — Number of cycles disallow was FALSE and the value
of test_expr matched a value in vals.

cover_not_in_vals BASIC — Number of cycles disallow was TRUE and the value
of test_expr did not match a value in vals.

cover_values_covered BASIC — Reports the values in vals that were covered at least
once. Not applicable for cycles where disallow = 1.

OVL Checkers
ovl_value_coverage

Accellera Standard OVL V2 LRM, 2.8.1 287
March 2014

ovl_value_coverage
Ensures that values of a specified expression are covered during simulation.

Syntax
ovl_value_coverage

[#(severity_level, width, is_not_width, is_not_count,
value_coverage, property_type, msg, coverage_level, clock_edge,
reset_polarity, gating_type)]

instance_name (clock, reset, enable, test_expr, is_not, fire);

Parameters/Generics

Parameters/Generics:
severity_level
width
is_not_width
is_not_count
value_coverage

property_type
msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: 2-cycle assertion

total_is_not_width = (is_not_count*is_not_width) ? is_not_count*is_not_width : 1

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of test_expr. Default: 1.

is_not_width Maximum width of an is_not value. Default: 1.

is_not_count Number of is_not values. Default: 0.

value_coverage Whether or not to perform value_coverage checks.
value_coverage = 0 (Default)

Turns off the value_coverage check.
value_coverage = 1

Turns on the value_coverage check.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

ovl_value_coverage

fire[OVL_FIRE_WIDTH-1:0]

test_expr[width-1:0]

is_not[total_is_not_width-1:0]

clock reset enable

Accellera Standard OVL V2 LRM, 2.8.1288

OVL Checkers
ovl_value_coverage

March 2014

Ports

Description
The ovl_value_coverage checker ensures the value of test_expr does not change when the
checker is active. The checker checks the multiple-bit expression test_expr at each rising edge
of clock whenever enable is TRUE. If test_expr has changed value, the assertion fails and msg
is printed. This checker is used to determine coverage of test_expr and to gather coverpoint
data. As such, the sense of the assertion is reversed. Unlike most other OVL checkers (which
verify assertions that are not expected to fail), ovl_coverage checkers’ assertion is intended to
fail, therefore the value_coverage check typically is turned off (value_coverage = 0).

Assertion Checks

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the checker. The checker samples on the rising
edge of the clock.

reset Synchronous reset signal indicating completed initialization.

enable Expression that indicates whether or not to check the inputs.

test_expr[width-1:0] Variable or expression to check.

is_not
[total_is_not_width
 - 1:0]

Concatenated list of is_not_count variables containing ‘is-not’
values for test_expr. The variables’ values are latched at reset
and are then used as values of test_expr to exclude from cover
point data.

If is_not = 1’b0 and both is_not_width and is_not_count are
undefined, then is-not values are not used. The test_expr variable
is covered when all possible values have been covered.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

VALUE_COVERAGE The value of the variable was covered.

property_type = ‘OVL_ASSERT
The value of test_expr should not change. This check occurs
at every active clock edge and fires if the value of test_expr
has changed from the value at the previous active clock edge.

OVL Checkers
ovl_value_coverage

Accellera Standard OVL V2 LRM, 2.8.1 289
March 2014

Implicit X/Z Checks

Cover Points

See also

Examples
ovl_value_coverage #(

.severity_level(‘OVL_ERROR),

.width(2),

.property_type(‘OVL_ASSERT),

.coverage_level(‘OVL_COVER_ALL))
ovl_coverage_mux_select(

.clock(clock),

.reset(reset),

.enable(1’b1),

.test_expr(mux_sel),

.is_not(1’b0),
.fire(fire));

All Values Covered corner case asserts when mux_sel has covered all encodings. Is_not_count
by default is 0; is_not_width by default is 1 and the is_not port is tied to 1’b0, so no is-not
values are included.

test_expr contains X or Z Expression contained X or Z bits.

is_not contains X or Z Expression contained X or Z bits.

cover_values_checked SANITY — Number of cycles test_expr changed value.

cover_computations_
checked

STATISTIC — Number of times the cover value was checked.

cover_values_covered STATISTIC — Number of values (including is-not values) that
test_expr has covered

cover_values_uncovered STATISTIC — Number of values (except is-not values) that
test_expr has not covered.

cover_all_values_
covered

CORNER — Non-zero if all values of test_expr (except is_not
values) have been covered. Otherwise it is set to 0.

ovl_coverage

clock

reset

mux_sel

Cornercases for Value Coverage Checker

2’b00 2’b10 2’b11 2’b10 2’b01 2’b00

All Values Covered

Accellera Standard OVL V2 LRM, 2.8.1290

OVL Checkers
ovl_width

March 2014

ovl_width
Checks that when value of an expression is TRUE, it remains TRUE for a minimum number of
clock cycles and transitions from TRUE no later than a maximum number of clock cycles.

Syntax
ovl_width

[#(severity_level, min_cks, max_cks, property_type, msg,
coverage_level, clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, test_expr, fire);

Parameters/Generics

Parameters/Generics:
severity_level
min_cks
max_cks
property_type

msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: n-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

min_cks Minimum number of clock edges test_expr must remain TRUE
once it is sampled TRUE. The special case where min_cks is 0
turns off minimum checking (i.e., test_expr can transition from
TRUE in the next clock cycle). Default: 1 (i.e., same as 0).

max_cks Maximum number of clock edges test_expr can remain TRUE
once it is sampled TRUE. The special case where max_cks is 0
turns off maximum checking (i.e., test_expr can remain TRUE
for any number of cycles). Default: 1 (i.e., test_expr must
transition from TRUE in the next clock cycle).

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

ovl_width

fire[OVL_FIRE_WIDTH-1:0]

test_expr

clock reset enable

OVL Checkers
ovl_width

Accellera Standard OVL V2 LRM, 2.8.1 291
March 2014

Ports

Description
The ovl_width assertion checker checks the single-bit expression test_expr at each active edge
of clock. If the value of test_expr is TRUE, the checker performs the following steps:

1. Unless it is disabled by setting min_cks to 0, a minimum check is initiated. The check
evaluates test_expr at each subsequent active edge of clock. If its value is not TRUE, the
minimum check fails. Otherwise, after min_cks -1 cycles transpire, the minimum check
terminates.

2. Unless it is disabled by setting max_cks to 0, a maximum check is initiated. The check
evaluates test_expr at each subsequent active edge of clock. If its value does not
transition from TRUE by the time max_cks cycles transpire (from the start of checking),
the maximum check fails.

3. The checker returns to checking test_expr in the next cycle. In particular if test_expr is
TRUE, a new set of checks is initiated.

Assertion Checks

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

test_expr Expression that should evaluate to TRUE for at least min_cks
cycles and at most max_cks cycles after it is sampled TRUE.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

MIN_CHECK The value of test_expr was held TRUE for less than min_cks
cycles.

MAX_CHECK The value of test_expr was held TRUE for more than max_cks
cycles.

Accellera Standard OVL V2 LRM, 2.8.1292

OVL Checkers
ovl_width

March 2014

Implicit X/Z Checks

Cover Points

Cover Groups

none

min_cks > max_cks The min_cks parameter is greater than the max_cks parameter
(and max_cks >0). Unless the violation is fatal, either the
minimum or maximum check will fail.

test_expr contains X or Z Expression value was X or Z.

cover_test_expr_
asserts

BASIC — A check was initiated (i.e., test_expr was sampled
TRUE).

cover_test_expr_
asserted_for_min_cks

CORNER — The expression test_expr was held TRUE for
exactly min_cks cycles (min_cks > 0).

cover_test_expr_
asserted_for_max_cks

CORNER — The expression test_expr was held TRUE for
exactly max_cks cycles (max_cks > 0).

OVL Checkers
ovl_width

Accellera Standard OVL V2 LRM, 2.8.1 293
March 2014

See also

Examples

Checks that req asserts for 2 or 3 cycles.

ovl_change
ovl_time

ovl_unchange

ovl_width #(

‘OVL_ERROR,
2,
3,
‘OVL_ASSERT,
“Error: invalid request”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// min_cks
// max_cks
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_request (

clock,
reset,
enable,
req == 1,
fire_valid_request);

// clock
// reset
// enable
// test_expr
// fire

clock

reset

MIN_CHECK Error: invalid request

req

MAX_CHECK Error: invalid request

1 2 1 2 3 41

Accellera Standard OVL V2 LRM, 2.8.1294

OVL Checkers
ovl_win_change

March 2014

ovl_win_change
Checks that the value of an expression changes in a specified window between a start event and
an end event.

Syntax
ovl_win_change

[#(severity_level, width, property_type, msg, coverage_level,
clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, start_event, test_expr, end_event,
fire);

Parameters/Generics

Ports

Parameters/Generics:
severity_level
width
property_type
msg

coverage_level
clock_edge
reset_polarity
gating_type

Class: event-bounded assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of the test_expr argument. Default: 1.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

ovl_win_change

fire [OVL_FIRE_WIDTH-1:0]start_event
end_event

test_expr[width-1:0]

clock reset enable

OVL Checkers
ovl_win_change

Accellera Standard OVL V2 LRM, 2.8.1 295
March 2014

Description
The ovl_win_change assertion checker checks the expression start_event at each active edge of
clock to determine if it should open an event window at the start of the next cycle. If start_event
is sampled TRUE, the checker evaluates test_expr. At each subsequent active edge of clock, the
checker evaluates end_event and re-evaluates test_expr. If end_event is TRUE, the checker
closes the event window and if all sampled values of test_expr equal its value at the start of the
window, then the assertion fails. The checker returns to the state of monitoring start_event at
the next active edge of clock after the event window is closed.

The checker is useful for ensuring proper changes in structures in various event windows. A
typical use is to verify that synchronization logic responds after a stimulus (for example, bus
transactions occurs without interrupts or write commands are not issued during read cycles).
Another typical use is verifying a finite-state machine responds correctly in event windows.

Assertion Checks

Implicit X/Z Checks

Cover Points

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

start_event Expression that opens an event window.

test_expr[width-1:0] Expression that should change value in the event window

end_event Expression that closes an event window.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

WIN_CHANGE The test_expr expression did not change value during an open
event window.

test_expr contains X or Z Expression value contained X or Z bits.

start_event contains X or Z Start event value was X or Z.

end_event contains X or Z End event value was X or Z.

cover_window_open BASIC — An event window opened (start_event was TRUE).

cover_window_close BASIC — An event window closed (end_event was TRUE in an
open event window).

Accellera Standard OVL V2 LRM, 2.8.1296

OVL Checkers
ovl_win_change

March 2014

Cover Groups

none

See also

Examples

Checks that data changes value in every data read window.

ovl_change
ovl_time
ovl_unchange

ovl_win_unchange
ovl_window

ovl_win_change #(

‘OVL_ERROR,
32,
‘OVL_ASSERT,
“Error: read not synchronized”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// width
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_sync_data_bus_rd (

clock,
reset,
enable,
rd,
data,
rd_ack,
fire_valid_sync_data_bus_rd);

// clock
// reset
// enable
// start_event
// test_expr
// end_event
// fire

clock

reset

data

WIN_CHANGE Error: read not synchronized

X FF 3A C7

rd

rd_ack

window_open

OVL Checkers
ovl_win_unchange

Accellera Standard OVL V2 LRM, 2.8.1 297
March 2014

ovl_win_unchange
Checks that the value of an expression does not change in a specified window between a start
event and an end event.

Syntax
ovl_win_unchange

[#(severity_level, width, property_type, msg, coverage_level,
clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, start_event, test_expr, end_event,
fire);

Parameters/Generics

Ports

Parameters/Generics:
severity_level
width
property_type
msg

coverage_level
clock_edge
reset_polarity
gating_type

Class: event-bounded assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of the test_expr argument. Default: 1.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

ovl_win_unchange

fire [OVL_FIRE_WIDTH-1:0]start_event
end_event

test_expr[width-1:0]

clock reset enable

Accellera Standard OVL V2 LRM, 2.8.1298

OVL Checkers
ovl_win_unchange

March 2014

Description
The ovl_win_unchange assertion checker checks the expression start_event at each active edge
of clock to determine if it should open an event window at the start of the next cycle. If
start_event is sampled TRUE, the checker evaluates test_expr. At each subsequent active edge
of clock, the checker evaluates end_event and re-evaluates test_expr. If a sampled value of
test_expr is changed from its value in the previous cycle, then the assertion fails. If end_event is
TRUE, the checker closes the event window (after reporting a violation if test_expr has
changed) and returns to the state of monitoring start_event at the next active edge of clock.

The checker is useful for ensuring certain variables and expressions do not change in various
event windows. A typical use is to verify that synchronization logic responds after a stimulus
(for example, bus transactions occurs without interrupts or write commands are not issued
during read cycles). Another typical use is to verify that non-deterministic multiple-cycle
operations with enabling conditions function properly with the same data.

Assertion Checks

Implicit X/Z Checks

Cover Points

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

start_event Expression that opens an event window.

test_expr[width-1:0] Expression that should not change value in the event window

end_event Expression that closes an event window.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

WIN_UNCHANGE The test_expr expression changed value during an open event
window.

test_expr contains X or Z Expression value contained X or Z bits.

start_event contains X or Z Start event value was X or Z.

end_event contains X or Z End event value was X or Z.

cover_window_open BASIC — An event window opened (start_event was TRUE).

cover_window_close BASIC — An event window closed (end_event was TRUE in an
open event window).

OVL Checkers
ovl_win_unchange

Accellera Standard OVL V2 LRM, 2.8.1 299
March 2014

Cover Groups

none

See also

Examples

Checks that the a input to the divider remains unchanged while a divide operation is performed
(i.e., in the window from start to done).

ovl_change
ovl_time
ovl_unchange

ovl_win_change
ovl_window

ovl_win_unchange #(

‘OVL_ERROR,
8,
‘OVL_ASSERT,
“Error: a changed during divide”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// width
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_div_win_unchange_a (

clock,
reset,
enable,
start,
a,
done,
fire_valid_div_win_unchange_a);

// clock
// reset
// enable
// start_event
// test_expr
// end_event
// fire

clock

reset

a

WIN_UNCHANGE Error: a changed during divide

87

done

310

start

17

window_open

Accellera Standard OVL V2 LRM, 2.8.1300

OVL Checkers
ovl_window

March 2014

ovl_window
Checks that the value of an expression is TRUE in a specified window between a start event and
an end event.

Syntax
ovl_window

[#(severity_level, property_type, msg, coverage_level, clock_edge,
reset_polarity, gating_type)]

instance_name (clock, reset, enable, start_event, test_expr, end_event,
fire);

Parameters/Generics

Ports

Parameters/Generics:
severity_level
property_type
msg
coverage_level

coverage_level
clock_edge
reset_polarity
gating_type

Class: event-bounded assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

ovl_window

fire [‘OVL_FIRE_WIDTH-1:0]start_event
end_event

test_expr

clock reset enable

OVL Checkers
ovl_window

Accellera Standard OVL V2 LRM, 2.8.1 301
March 2014

Description
The ovl_window assertion checker checks the expression start_event at each active edge of
clock to determine if it should open an event window at the start of the next cycle. If start_event
is sampled TRUE, at each subsequent active edge of clock, the checker evaluates end_event and
test_expr. If a sampled value of test_expr is not TRUE, then the assertion fails. If end_event is
TRUE, the checker closes the event window and returns to the state of monitoring start_event at
the next active edge of clock.

The checker is useful for ensuring proper changes in structures after various events. For
example, it can be used to check that multiple-cycle operations with enabling conditions
function properly with the same data. It can be used to check that single-cycle operations
function correctly with data loaded at different cycles. It also can be used to verify
synchronizing conditions that require date to be stable after an initial triggering event.

Assertion Checks

Implicit X/Z Checks

Cover Points

Cover Groups

none

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

start_event Expression that opens an event window.

test_expr Expression that should be TRUE in the event window

end_event Expression that closes an event window.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

WINDOW The test_expr expression changed value during an open event
window.

test_expr contains X or Z Expression value was X or Z.

start_event contains X or Z Start event value was X or Z.

end_event contains X or Z End event value was X or Z.

cover_window_open BASIC — A change check was initiated.

cover_window_close BASIC — A change check lasted the full num_cks cycles.

Accellera Standard OVL V2 LRM, 2.8.1302

OVL Checkers
ovl_window

March 2014

See also

Examples

Checks that the bus grant is not deasserted during a write cycle.

ovl_change
ovl_time
ovl_unchange

ovl_win_change
ovl_win_unchange

ovl_window #(

‘OVL_ERROR,
‘OVL_ASSERT,
“Error: write without grant”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_sync_data_bus_write (

clock,
reset,
enable,
write,
bus_gnt,
write_ack,
fire_valid_sync_data_bus_write);

// clock
// reset
// enable
// start_event
// test_expr
// end_event
// fire

clock

reset

window_open

write

write_ack

bus_gnt

WINDOW Error: write without grant

OVL Checkers
ovl_xproduct_bit_coverage

Accellera Standard OVL V2 LRM, 2.8.1 303
March 2014

ovl_xproduct_bit_coverage
Ensures functional cross product bit coverage of two vectors.

Syntax
ovl_xproduct_bit_coverage

[#(severity_level, width1, width2, test_expr2_enable,
coverage_check, property_type, msg, coverage_level, clock_edge,
reset_polarity, gating_type)]

instance_name (clock, reset, enable, test_expr1, test_expr2, fire);

Parameters/Generics

Parameters/Generics:
severity_level
width1
width2
test_expr2_enable
coverage_check

property_type
msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: event-bounded assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width1 Width of the test_expr1. Default: 1.

width2 Width of the test_expr2. Default: 1.

test_expr2_enable Whether or not to use test_expr2 as the second vector.
test_expr2_enable = 0 (Default)

Use test_expr1 as the second vector (test_expr2 is ignored).
test_expr2_enable = 1

Use test_expr2 as the second vector.

coverage_check Whether or not to perform coverage checks.
coverage_check = 0 (Default)

Turns off the coverage check.
coverage_check = 1

Turns on the coverage check.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

ovl_xproduct_bit_coverage

fire[OVL_FIRE_WIDTH-1:0]

test_expr1[width1-1:0]

test_expr2[width2-1:0]

clock reset enable

Accellera Standard OVL V2 LRM, 2.8.1304

OVL Checkers
ovl_xproduct_bit_coverage

March 2014

Ports

Description
The ovl_xproduct_bit_coverage checker determines cross-product coverage of the bits of one or
two variables and gathers coverpoint data. By default, the checker performs no assertion checks.
If test_expr2_enable is 1, the checker checks the expressions test_expr1 and test_expr2 at each
rising edge of clk whenever enable is TRUE. If test_expr1or test_expr2 has changed value, the
checker updates its cross-product coverage matrix based on the values of test_expr1 and
test_expr2.

The checker’s cross-product coverage matrix is a bit matrix whose rows correspond to the
descending bits of test_expr1 and whose columns correspond to the descending bits of
test_expr2. Elements in the matrix are the corresponding bits of test_expr1and test_expr2
ANDed together. For example, if:

test_expr1 is a[9:6]

and

test_expr2 is b[5:3]

then the cross-product coverage matrix is:

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the checker. The checker samples on the rising
edge of the clock.

reset Synchronous reset signal indicating completed initialization.

enable Expression that indicates whether or not to check the inputs.

test_expr1[width1-1:0] First vector, specified as a signal, vector or concatenation of
signals.

test_expr2[width2-1:0] Second vector (if test_expr2_enable is 1), specified as a signal,
vector or concatenation of signals (or 1’b0).

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

a[9] & b[5] a[9] & b[4] a[9] & b[3]

a[8] & b[5] a[8] & b[4] a[8] & b[3]

OVL Checkers
ovl_xproduct_bit_coverage

Accellera Standard OVL V2 LRM, 2.8.1 305
March 2014

At reset, the matrix is initialized to all 0’s. Each cycle test_expr1 or test_expr2 changes, the
checker calculates a temporary matrix for the current values of test_expr1 and test_expr2. Then,
the cross-coverage matrix is updated by setting all elements to 1 whose corresponding elements
in the temporary matrix are 1. That is, the bits of the cross-product coverage matrix are “sticky”:
once set to 1, they remain set to 1. The matrix is considered covered when all bits are 1.

To help analyze partial coverage, the Coverage Matrix Bitmap statistic coverpoint is a
concatenated list of the bits of the cross-product coverage matrix arranged by rows.

By default, the value of test_expr2_enable is 0, which disables the test_expr2 port. This is the
special case where the checker maintains a cross-product coverage matrix for a vector with
itself. However, the Coverage Matrix Bitmap value reported is not the same as one for a matrix
where test_expr2 = test_expr1. In this special case, diagonal elements are extraneous (for
example, a[3]==1 && a[3]==1) and the elements of the lower-half matrix are redundant. So, the
matrix reported by the Coverage Matrix Bitmap is formed by removing the diagonal elements
and setting all lower-half matrix elements to 1. For example, if:

test_expr2_enable is 0
test_expr1 is a[9:6]
test_expr2 is 1’b0

then the cross-product coverage matrix reported by Coverage Matrix Bitmap is:

Assertion Checks

Implicit X/Z Checks

Cover Points

a[7] & b[5] a[7] & b[4] a[7] & b[3]

a[6] & b[5] a[6] & b[4] a[6] & b[3]

a[9] & a[8] a[9] & a[7] a[9] & a[6]

1 a[8] & a[7] a[8] & a[6]

1 1 a[7] & a[6]

COVERAGE All bits of the coverage matrix were covered.

Every bit of the cross product coverage matrix is 1.

test_expr1 contains X or Z Expression contained X or Z bits.

test_expr2 contains X or Z Expression contained X or Z bits.

cover_test_expr1_
checked

SANITY — Number of cycles test_expr1 changed value.

Accellera Standard OVL V2 LRM, 2.8.1306

OVL Checkers
ovl_xproduct_bit_coverage

March 2014

Cover Groups

None

See also

Examples
Example 1

ovl_xproduct_bit_coverage #(
.severity_level(‘OVL_ERROR),

.width1(5),
.property_type(‘OVL_ASSERT),
.msg(‘OVL_VIOLATION : "),
.coverage_level(‘OVL_COVER_NONE))
XPD1 (

.clock(clock),

.reset(1’b1),

.enable(1’b1),

.test_expr1(a[4:0]),

.test_expr2(1’b0))
.fire(fire));

 Maintains the following bit coverage matrix:

Example 2

ovl_xproduct_bit_coverage #(
.severity_level(‘OVL_ERROR),
.width1(4),
.coverage_check(1’b1),
.property_type(‘OVL_ASSERT),
.msg(‘OVL_VIOLATION : "),
.coverage_level(‘OVL_COVER_NONE))

cover_test_expr2_
checked

SANITY — Number of cycles test_expr2 changed value if
parameter test_expr2_enable is set to 1

cover_value_checked STATISTIC — Number of times the cover value was checked.

cover_matrix_covered CORNER — Number of times all bits of the matrix is 1.

ovl_coverage
ovl_xproduct_value_coverage

ovl_value_coverage

a[4] & a[3] a[4] & a[2] a[4] & a[1] a[4] & a[0]

1 a[3] & a[2] a[3] & a[1] a[3] & a[0]

1 1 a[2] & a[1] a[2] & a[0]

1 1 1 a[1] & a[0]

OVL Checkers
ovl_xproduct_bit_coverage

Accellera Standard OVL V2 LRM, 2.8.1 307
March 2014

XPD2 (
.clock(clock),
.reset(1’b1),
.enable(1’b1),
.test_expr1({sig3, sig2, sig1, sig0}))

.fire(fire));

 Maintains the following bit coverage matrix:

Example 3

ovl_xproduct_bit_coverage #(
.severity_level(‘OVL_ERROR),
.width1(5),
.width2(4),
.test_expr2_enable(1),
.coverage_check(1’b1),
.property_type(‘OVL_ASSERT),
.msg(‘OVL_VIOLATION : "),
.coverage_level(‘OVL_COVER_NONE))

XPD3 (
.clock(clock),
.reset(1’b1),
.enable(1’b1),
.test_expr1(a[4:0]),
.test_expr2(b[3:0]),

.fire(fire));

sig3 & sig2 sig3 & sig1 sig3 & sig0

1 sig2 & sig1 sig2 & sig0

1 1 sig1 & sig0

Accellera Standard OVL V2 LRM, 2.8.1308

OVL Checkers
ovl_xproduct_bit_coverage

March 2014

Maintains the following bit coverage matrix:

Example 4

ovl_xproduct_bit_coverage #(
.severity_level(‘OVL_ERROR),
.width1(4),
.width2(1),
.test_expr2_enable(1),
.property_type(‘OVL_ASSERT),
.msg(‘OVL_VIOLATION : "),
.coverage_level(‘OVL_COVER_NONE))

XPD4 (
.clock(clock),
.reset(1’b1),
.active(1’b1),
.test_expr1(a[3:0]),
.test_expr2(sig));

Maintains the following bit coverage matrix:

a[4] & b[3] a[4] & b[2] a[4] & b[1] a[4] & b[0]

a[3] & b[3] a[3] & b[2] a[3] & b[1] a[3] & b[0]

a[2] & b[3] a[2] & b[2] a[2] & b[1] a[2] & b[0]

a[1] & b[3] a[1] & b[2] a[1] & b[1] a[1] & b[0]

a[0] & b[3] a[0] & b[2] a[0] & b[1] a[0] & b[0]

a[3] & sig

a[2] & sig

a[1] & sig

a[0] & sig

OVL Checkers
ovl_xproduct_value_coverage

Accellera Standard OVL V2 LRM, 2.8.1 309
March 2014

ovl_xproduct_value_coverage
Ensures functional cross product value coverage of two variables.

Syntax
ovl_xproduct_value_coverage

[#(severity_level, width1,width2, val1_width, val2_width,
val1_count, val2_count, min1, min2, max1, max2, coverage_check,
property_type, msg, coverage_level, clock_edge, reset_polarity,
gating_type)]

instance_name (clock, reset, enable, test_expr1, test_expr2, val1,
val2);

Parameters/Generics

Parameters/Generics:
severity_level
width1
width2
val1_width
val2_width
val1_count
val2_count
min1
min2

max1
max2
coverage_check
property_type
msg
coverage_level
clock_edge
reset_polarity
gating_type

Class: event-bounded assertion

*val1_width = val1_count > 0 ? val1_count * val1_width : 1
**val2_width = val2_count > 0 ? val2_count * val2_width : 1

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width1 Width of the test_expr1. Default: 1.

width2 Width of the test_expr2. Default: 1.

val1_width Width of each item in val1. Default: 1.

val2_width Width of each item in val2. Default: 1.

val1_count Number of items in val1. Default: 0.

val2_count Number of items in val2. Default: 0.

min1 Minimum value of the range of test_expr1. Ignored unless
val1_count = 0. Default : 0

min2 Minimum value of the range of test_expr2. Ignored unless
val2_count = 0. Default : 0

ovl_xproduct_value_coverage

fire [OVL_FIRE_WIDTH-1:0]
test_expr1[width1-1:0]
val1[val1_width-1:0]*

test_expr2[width2-1:0]
val2[val2_width-1:0]**

clock reset enable

Accellera Standard OVL V2 LRM, 2.8.1310

OVL Checkers
ovl_xproduct_value_coverage

March 2014

Ports

max1 Maximum value of the range of test_expr1. Ignored unless
val1_count = 0.
max1 = 0 (Default)

Maximum value is the largest possible value of test_expr1.
max1 > 0

Maximum value is max1.

max2 Maximum value of the range of test_expr2. Ignored unless
val2_count = 0.
max2 = 0 (Default)

Maximum value is the largest possible value of test_expr2.
max2 > 0

Maximum value is max2.

coverage_check Whether or not to perform coverage checks.
coverage_check = 0 (Default)

Turns off the coverage check.
coverage_check = 1

Turns on the coverage check.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the checker. The checker samples on the rising
edge of the clock.

reset Synchronous reset signal indicating completed initialization.

enable Expression that indicates whether or not to check the inputs.

test_expr1[width1-1:0] First variable or expression.

test_expr2[width2-1:0] Second variable or expression.

OVL Checkers
ovl_xproduct_value_coverage

Accellera Standard OVL V2 LRM, 2.8.1 311
March 2014

Description
The ovl_xproduct_value_coverage checker determines cross-product coverage of the ranges of
two variables and gathers coverpoint data. By default, the checker performs no assertion checks.
The checker checks the expressions test_expr1 and test_expr2 at each rising edge of clock
whenever enable is TRUE. If test_expr1or test_expr2 has changed value, the checker updates its
cross-product coverage matrix based on the values of test_expr1 and test_expr2.

The checker’s cross-product coverage matrix is a bit matrix whose rows correspond to the range
of values of test_expr1 and whose columns correspond to the range of values of test_expr2. At
reset, the matrix is initialized to all 0’s. In a cycle in which both test_expr1 and test_expr2 have
values in their respective ranges, the matrix element corresponding to that event is set to 1. The
bits of the cross-product coverage matrix are “sticky”: once set to 1, they remain set to 1. The
matrix is considered covered when all bits are 1. To help analyze partial coverage, the Coverage
Matrix Bitmap statistic coverpoint is a concatenated list of the bits of the cross-product
coverage matrix arranged by rows.

The ranges of test_expr1 and test_expr2 can be specified in two ways: as contiguous value
ranges and as discrete value ranges.

Contiguous Value Range

By default, the ranges of test_expr1 and test_expr2 are from 0 to their largest possible value.
Setting min1 and max1 restricts the range of test_expr1 to min1, min1+1, ... , max1. Similarly,
setting min2 and max2 restricts the range of test_expr2 to min2, min2+1, ... , max2. The default
value of min1 and min2 is 0. The default value of max1 and max2 is 0, which sets the top range
values to the maximum values of test_expr1 and test_expr2.

val1[val1_width-1:0] val1_count = 0
Connect to 1‘b0.

val1_count > 0
Concatenated list of val1_count elements that define the
range of test_expr1. Each element is a val1_width wide
variable or expression.

val2[val2_width-1:0] val2_count = 0
Connect to 1‘b0.

val2_count > 0
Concatenated list of val2_count elements that define the
range of test_expr2. Each element is a val2_width wide
variable or expression.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

Accellera Standard OVL V2 LRM, 2.8.1312

OVL Checkers
ovl_xproduct_value_coverage

March 2014

For example, if:

test_expr1 is a
min1 = 6 and max1 = 9

and

test_expr2 is b
min2 = 3 and max2 = 5

then the cross-product coverage matrix is:

Discrete Value Range

Setting val1_count > 1 enables discrete values for the range of test_expr1. The val1 port
contains these values as a concatenated list of val1_count values, each value having width
val1_width. The values of min1 and max1 are ignored. Similarly, setting val2_count > 1 enables
discrete values for the range of test_expr2. The val2 port contains these values as a concatenated
list of val2_count values, each value having width val2_width. The values of min2 and max2 are
ignored.

For example, if:

test_expr1 is a
val1_count = 4, val1_width = 16 and val2 = {1’h9, 1‘hB, 1’hF, 1’h4}

and

test_expr2 is b
val1_count = 3, val1_width = 12 and val1 = {1’h3, 1’h8, 1’h7}

then the cross-product coverage matrix is:

(a==9)&&(b==5) (a==9)&&(b==4) (a==9)&&(b==3)

(a==8)&&(b==5) (a==8)&&(b==4) (a==8)&&(b==3)

(a==7)&&(b==5) (a==7)&&(b==4) (a==7)&&(b==3)

(a==6)&&(b==5) (a==6)&&(b==4) (a==6)&&(b==3)

(a==4)&&(b==7) (a==4)&&(b==8) (a==4)&&(b==3)

(a==F)&&(b==7) (a==F)&&(b==8) (a==F)&&(b==3)

(a==B)&&(b==7) (a==B)&&(b==8) (a==B)&&(b==3)

(a==9)&&(b==7) (a==9)&&(b==8) (a==9)&&(b==3)

OVL Checkers
ovl_xproduct_value_coverage

Accellera Standard OVL V2 LRM, 2.8.1 313
March 2014

Discrete value ranges have the following characteristics:

• One test expression can have a contiguous range while the other test expression has a
discrete range.

• Discrete ranges can be dynamic. Typically, the val1 and val2 ports should remain
constant, so the coverage matrix makes sense. However, the checker does not check this
restriction. If the value of val1 or val2 has changed, a new set of range values are used
for the current cycle. The same cross-product coverage matrix is updated, but the
updated elements correspond to the new ranges.

• Discrete ranges can have duplicate values. Although this is not a typical usage, if a value
with duplicates is covered, all corresponding matrix bits are set.

Assertion Checks

Implicit X/Z Checks

Cover Points

Cover Groups

None

See also

COVERAGE All bits of the coverage matrix were covered.

Every bit of the cross-product coverage matrix is 1.

test_expr1 contains X or Z Expression contained X or Z bits.

test_expr2 contains X or Z Expression contained X or Z bits.

val1 contains X or Z Expression contained X or Z bits.

val2 contains X or Z Expression contained X or Z bits.

cover_test_expr1_
checked

SANITY — Number of cycles test_expr1 changed value.

cover_test_expr2_
checked

SANITY — Number of cycles test_expr2 changed value.

cover_value_checked STATISTIC — Number of cycles in which test_expr1 or
test_expr2 loaded a value.

cover_matrix_covered CORNER — If non-zero, all bits of the cross-product coverage
matrix are covered.

ovl_coverage
ovl_xproduct_bit_coverage

ovl_value_coverage

Accellera Standard OVL V2 LRM, 2.8.1314

OVL Checkers
ovl_xproduct_value_coverage

March 2014

Examples
Example 1

ovl_xproduct_value_coverage #(
.severity_level(‘OVL_ERROR),
.width1(3),
.width2(2),
.coverage_check(1’b0),
.property_type(‘OVL_ASSERT),
.msg(“OVL_VIOLATION : "),
.coverage_level(‘OVL_COVER_NONE))
XVC1 (

.clock(clock),

.reset(1’b1),

.enable(1’b1),

.test_expr1(a),

.test_expr2(b),

.val1(1’b0),

.val2(1’b0),
.fire(fire));

Maintains the following cross-product coverage matrix:

Example 2

ovl_xproduct_value_coverage #(
.severity_level(‘OVL_ERROR),
.width1(3),
.width2(2),
.min1(3),
.min2(1),
.max1(4),
.coverage_check(1’b1),
.property_type(‘OVL_ASSERT),
.msg(“OVL_VIOLATION : "),
.coverage_level(‘OVL_COVER_NONE))

XVC2 (
.clock(clock),
.reset(1’b1),

(a==7)&&(b==3) (a==7)&&(b==2) (a==7)&&(b==1) (a==7)&&(b==0)

(a==6)&&(b==3) (a==6)&&(b==2) (a==6)&&(b==1) (a==6)&&(b==0)

(a==5)&&(b==3) (a==5)&&(b==2) (a==5)&&(b==1) (a==5)&&(b==0)

(a==4)&&(b==3) (a==4)&&(b==2) (a==4)&&(b==1) (a==4)&&(b==0)

(a==3)&&(b==3) (a==3)&&(b==2) (a==3)&&(b==1) (a==3)&&(b==0)

(a==2)&&(b==3) (a==2)&&(b==2) (a==2)&&(b==1) (a==2)&&(b==0)

(a==1)&&(b==3) (a==1)&&(b==2) (a==1)&&(b==1) (a==1)&&(b==0)

(a==0)&&(b==3) (a==0)&&(b==2) (a==0)&&(b==1) (a==0)&&(b==0)

OVL Checkers
ovl_xproduct_value_coverage

Accellera Standard OVL V2 LRM, 2.8.1 315
March 2014

.enable(1’b1),

.test_expr1(a),

.test_expr2(b),

.val1(1’b0),

.val2(1’b0),
.fire(fire));

Maintains the following cross-product coverage matrix:

If the Coverage Matrix Bitmap is 111100, the cross-product coverage matrix is:

Here, all combinations were covered except (a==3)&&(b==2) and (a==3)&&(b==1).

Example 3

ovl_xproduct_value_coverage #(
.severity_level(‘OVL_ERROR),
.width1(8),
.width2(4),
.val1_width(8),
.val1_count(3),
.val2_width(4),
.val2_count(4),
.coverage_check(1’b1),
.property_type(‘OVL_ASSERT),
.msg(“OVL_VIOLATION : "),
.coverage_level(‘OVL_COVER_NONE))

XVC3 (
.clock(clock),
.reset(1’b1),
.enable(1’b1),
.test_expr1(a),
.test_expr2(b),
.val1(24’b111111110111111100000001),
.val2(16’b0111000001010010),

.fire(fire));

Maintains the following coverage matrix:

(a==4)&&(b==3) (a==4)&&(b==2) (a==4)&&(b==1)

(a==3)&&(b==3) (a==3)&&(b==2) (a==3)&&(b==1)

1 1 1

1 0 0

(a==225)&&(b==7) (a==225)&&(b==0) (a==225)&&(b==5) (a==225)&&(b==2)

(a==127)&&(b==7) (a==127)&&(b==0) (a==127)&&(b==5) (a==127)&&(b==2)

(a==1)&&(b==7) (a==1)&&(b==0) (a==1)&&(b==5) (a==1)&&(b==2)

Accellera Standard OVL V2 LRM, 2.8.1316

OVL Checkers
ovl_xproduct_value_coverage

March 2014

If the Coverage Matrix Bitmap is 101111111110, the cross-product coverage matrix is:

Here, all combinations were covered except (a==225)&&(b==0) and (a==1)&&(b==2).

1 0 1 1

1 1 1 1

1 1 1 0

OVL Checkers
ovl_zero_one_hot

Accellera Standard OVL V2 LRM, 2.8.1 317
March 2014

ovl_zero_one_hot
Checks that the value of an expression is zero or one-hot.

Syntax
ovl_zero_one_hot

[#(severity_level, width, property_type, msg, coverage_level,
clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, test_expr, fire);

Parameters/Generics

Ports

Parameters/Generics:
severity_level
width
property_type
msg

coverage_level
clock_edge
reset_polarity
gating_type

Class: 1-cycle assertion

severity_level Severity of the failure. Default: OVL_SEVERITY_DEFAULT
(OVL_ERROR).

width Width of the test_expr argument. Default: 32.

property_type Property type. Default: OVL_PROPERTY_DEFAULT
(OVL_ASSERT).

msg Error message printed when assertion fails. Default:
OVL_MSG_DEFAULT (“VIOLATION”).

coverage_level Coverage level. Default: OVL_COVER_DEFAULT
(OVL_COVER_BASIC).

clock_edge Active edge of the clock input. Default:
OVL_CLOCK_EDGE_DEFAULT (OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:
OVL_RESET_POLARITY_DEFAULT
(OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:
OVL_GATING_TYPE_DEFAULT (OVL_GATE_CLOCK).

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

ovl_zero_one_hot

fire[OVL_FIRE_WIDTH-1:0]

test_expr[width-1:0]

clock reset enable

Accellera Standard OVL V2 LRM, 2.8.1318

OVL Checkers
ovl_zero_one_hot

March 2014

Description
The ovl_zero_one_hot assertion checker checks the expression test_expr at each active edge of
clock to verify the expression evaluates to a one-hot value or is zero. A one-hot value has
exactly one bit set to 1.

The checker is useful for verifying control circuits, circuit enabling logic and arbitration logic.
For example, it can ensure that a finite-state machine with zero-one-cold encoding operates
properly and has exactly one bit asserted high—or else is zero. In a datapath circuit the checker
can ensure that the enabling conditions for a bus do not result in bus contention.

Assertion Checks

Implicit X/Z Checks

Cover Points

Cover Groups

none

enable Enable signal for clock, if gating_type = OVL_GATE_CLOCK
(the default gating type) or reset (if gating_type =
OVL_GATE_RESET). Ignored if gating_type is OVL_NONE.

test_expr[width-1:0] Expression that should evaluate to either 0 or a one-hot value on
the active clock edge.

fire
[OVL_FIRE_WIDTH-1:0]

Fire output. Assertion failure when fire[0] is TRUE. X/Z check
failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

ZERO_ONE_HOT Expression evaluated to a value with multiple bits set to 1.

test_expr contains X or Z Expression value contained X or Z bits.

cover_test_expr_change SANITY — Expression has changed value.

cover_all_one_hots_
checked

CORNER — Expression evaluated to all possible combinations
of one-hot values.

cover_test_expr_all_
zeros

CORNER — Expression evaluated to 0.

OVL Checkers
ovl_zero_one_hot

Accellera Standard OVL V2 LRM, 2.8.1 319
March 2014

Notes
1. By default, the ovl_zero_one_hot assertion is optimistic and the assertion fails if

test_expr has multiple bits not set to 0 (i.e.equals 1, X, Z, etc.). However, if
OVL_XCHECK_OFF is set, the assertion fails if and only if test_expr has multiple bits
that are 1.

See also

Examples

Checks that sel is zero or one-hot at each rising edge of clock.

ovl_one_cold ovl_one_hot

ovl_zero_one_hot #(

‘OVL_ERROR,
4,
‘OVL_ASSERT,
“Error: sel not zero or one-hot”,
‘OVL_COVER_DEFAULT,
‘OVL_POSEDGE,
‘OVL_ACTIVE_LOW,
‘OVL_GATE_CLOCK)

// severity_level
// width
// property_type
// msg
// coverage_level
// clock_edge
// reset_polarity
// gating_type

valid_sel_zero_one_hot (

clock,
reset,
enable,
sel
fire_valid_sel_zero_one_hot);

// clock
// reset
// enable
// test_expr
// fire

clock

reset

sel

ZERO_ONE_HOT

XXXX

test_expr contains X/Z value
Error: sel not zero or one-hot

1000 0100 0010 0011 0001 0100 1000 0100

Accellera Standard OVL V2 LRM, 2.8.1320

OVL Checkers
ovl_zero_one_hot

March 2014

Accellera Standard OVL V2 LRM, 2.8.1322

OVL Macros
Global Macros

March 2014

OVL_CLOCK_EDGE_
DEFAULT

Value of clock_edge to use when the
parameter is unspecified. Default:
OVL_POSEDGE.

OVL_RESET_POLARITY_
DEFAULT

Value of reset_polarity to use when the
parameter is unspecified. Default:
OVL_ACTIVE_LOW.

OVL_GATING_TYPE_
DEFAULT

Value of gating_type to use when the
parameter is unspecified. Default:
OVL_GATE_CLOCK.

Clock/Reset
Gating

OVL_GATING_OFF Removes all gating logic and creates checkers
with gating_type OVL_GATE_NONE.
Default: each checker gated according to its
gating_type parameter value..

Global Reset OVL_GLOBAL_RESET=
reset_signal

Overrides the reset port assignments of all
assertion checkers with the specified active
low global reset signal. Default: each
checker’s reset is specified by the reset port.

Reporting OVL_MAX_REPORT_ERROR Discontinues reporting a checker’s assertion
violations if the number of times the checker
has reported one or more violations reaches
this limit. Default: unlimited reporting.

OVL_MAX_REPORT_COVER_
POINT

Discontinues reporting a checker’s cover
points if the number of times the checker has
reported one or more cover points reaches this
limit.Default: unlimited reporting.

OVL_INIT_MSG Reports configuration information for each
checker when it is instantiated at the start of
simulation. Default: no initialization messages
reported.

OVL_END_OF_SIMULATION
=eos_signal

Performs quiescent state checking at end of
simulation when the eos_signal asserts.
Default: not defined.

Fatal Error
Runtime

OVL_RUNTIME_AFTER_
FATAL

Number of time units from a fatal error to end
of simulation. Default: 100.

Type Macro Description

OVL Macros
Global Macros

Accellera Standard OVL V2 LRM, 2.8.1 323
March 2014

Internal Global Macros

The following global variables are for internal use and the user should not redefine them:

X/Z Values OVL_IMPLICIT_XCHECK_
OFF

Turns off implicit X/Z checks. Default: not
defined.

OVL_XCHECK_OFF Turns off all X/Z checks. Default: not defined.

‘endmodule
‘module
OVL_FIRE_WIDTH
OVL_RESET_SIGNAL
OVL_SHARED_CODE
OVL_STD_DEFINES_H
OVL_VERSION

Type Macro Description

Accellera Standard OVL V2 LRM, 2.8.1324

OVL Macros
Macros Common to All Assertions

March 2014

Macros Common to All Assertions
Parameter Macro Description

severity_
level

OVL_FATAL Runtime fatal error.

OVL_ERROR Runtime error.

OVL_WARNING Runtime Warning.

OVL_INFO Assertion failure has no specific severity.

property_type OVL_ASSERT Assertion checks and X/Z checks are asserts.

OVL_ASSUME Assertion checks and X/Z checks are assumes.

OVL_ASSERT_2STATE Assertion checks are asserts. X/Z checks are
disabled.

OVL_ASSUME_2STATE Assertion checks are assumes. X/Z checks are
disabled.

OVL_IGNORE Assertion checks and X/Z checks are disabled.

coverage_
level

OVL_COVER_ALL Includes coverage logic for all of the
checker’s cover points if OVL_COVER_ON
is defined.

OVL_COVER_NONE Excludes coverage logic for all of the
checker’s cover points.

OVL_COVER_SANITY Includes coverage logic for the checker’s
SANITY cover points if OVL_COVER_ON
is defined. Can be bitwise-ORed with
OVL_COVER_BASIC,
OVL_COVER_CORNER and
OVL_COVER_STATISTIC.

OVL_COVER_BASIC (default) Includes coverage logic for the
checker’s BASIC cover points if
OVL_COVER_ON is defined. Can be
bitwise-ORed with OVL_COVER_SANITY,
OVL_COVER_CORNER and
OVL_COVER_STATISTIC.

OVL_COVER_CORNER Includes coverage logic for the checker’s
CORNER cover points if OVL_COVER_ON
is defined. Can be bitwise-ORed with
OVL_COVER_SANITY,
OVL_COVER_BASIC and
OVL_COVER_STATISTIC.

OVL Macros
Macros Common to All Assertions

Accellera Standard OVL V2 LRM, 2.8.1 325
March 2014

OVL_COVER_STATISTIC Includes coverage logic for the checker’s
STATISTIC cover points if
OVL_COVER_ON is defined. Can be
bitwise-ORed with OVL_COVER_SANITY,
OVL_COVER_BASIC and
OVL_COVER_CORNER.

clock_edge OVL_POSEDGE Rising edges are active clock edges.

OVL_NEGEDGE Falling edges are active clock edges.

reset_
polarity

OVL_ACTIVE_LOW Reset is active when FALSE.

OVL_ACTIVE_HIGH Reset is active when TRUE.

gating_type OVL_GATE_NONE Checker ignores the enable input.

OVL_GATE_CLOCK Checker pauses when enable is FALSE. The
checker treats the current cycle as a NOP.
Checks, counters and internal values remain
unchanged.

OVL_GATE_RESET Checker resets (as if the reset input became
active) when enable is FALSE.

Parameter Macro Description

Accellera Standard OVL V2 LRM, 2.8.1326

OVL Macros
Macros for Specific Assertions

March 2014

Macros for Specific Assertions
Parameter Checkers Macro Description

action_on_
new_start

ovl_change
ovl_frame
ovl_time
ovl_unchange

OVL_IGNORE_NEW_START Ignore new start events.

OVL_RESET_ON_NEW_
START

Restart check on new start
events.

OVL_ERROR_ON_NEW_
START

Assert fail on new start
events.

OVL_ACTION_ON_NEW_
START_DEFAULT

Value of action_on_new_
start to use when the
parameter is unspecified.
Default: OVL_
IGNORE_NEW_START.

edge_type ovl_always_
on_edge

OVL_NOEDGE Always initiate check.

OVL_POSEDGE Initiate check on rising
edge of sampling event.

OVL_NEGEDGE Initiate check on falling
edge of sampling event.

OVL_ANYEDGE Initiate check on both
edges of sampling event.

OVL_EDGE_TYPE_DEFAULT Value of edge_type to use
when the parameter is
unspecified. Default:
OVL_NOEDGE.

necessary_
condition

ovl_cycle_
sequence

OVL_TRIGGER_ON_MOST_
PIPE

Necessary condition is
full sequence. Pipelining
enabled.

OVL_TRIGGER_ON_FIRST_
PIPE

Necessary condition is
first in sequence.
Pipelining enabled.

OVL_TRIGGER_ON_FIRST_
NOPIPE

Necessary condition is
first in sequence.
Pipelining disabled.

OVL Macros
Macros for Specific Assertions

Accellera Standard OVL V2 LRM, 2.8.1 327
March 2014

OVL_NECESSARY_
CONDITION_DEFAULT

Value of
necessary_condition to
use when the parameter is
unspecified. Default:
OVL_TRIGGER_ON_
MOST_PIPE.

inactive ovl_one_cold OVL_ALL_ZEROS Inactive state is all 0’s.

OVL_ALL_ONES Inactive state is all 1’s.

OVL_ONE_COLD (default) No inactive
state.

OVL_INACTIVE_DEFAULT Value of inactive to use
when the parameter is
unspecified. Default:
OVL_ONE_COLD.

Parameter Checkers Macro Description

Accellera Standard OVL V2 LRM, 2.8.1328

OVL Macros
Macros for Specific Assertions

March 2014

Accellera Standard OVL V2 LRM, 2.8.1 329
March 2014

Appendix B
OVL Backward Compatibility

V2.3
The V2.3 version of OVL is compatible with the V1.8 version. That is, EDA tools that analyzed
designs with V1.8 checkers will work seamlessly with the V2.3 OVL implementation. These
checkers are identified by the prefix assert_ (see Table B-1).

The assert_* checkers have the same parameters and ports as the V1.x versions of the checkers,
so their instance specifications have not changed. However, these checkers do not have the
extended parameters (clock_edge, reset_polarity and gating_type) and ports (enable and fire)
added to the new V2 OVL implementations. For this reason, they are deprecated.

Table B-1. assert_* Checker Types

assert_always
assert_always_on_edge
assert_change
assert_cycle_sequence
assert_decrement
assert_delta
assert_even_parity
assert_fifo_index
assert_frame
assert_handshake
assert_implication

assert_increment
assert_never
assert_never_unknown
assert_never_unknown_async
assert_next
assert_no_overflow
assert_no_transition
assert_no_underflow
assert_odd_parity
assert_one_cold
assert_one_hot

assert_proposition
assert_quiescent_state
assert_range
assert_time
assert_transition
assert_unchange
assert_width
assert_win_change
assert_win_unchange
assert_window
assert_zero_one_hot

Accellera Standard OVL V2 LRM, 2.8.1330

OVL Backward Compatibility

March 2014

The new V2 OVL checkers are identified by the prefix ovl_ (see Table B-2).

These include 33 checkers that are extended versions of their assert_* counterparts. Plus
completely new checkers.

assert_fifo_index and ovl_fifo_index

The V1 assert_fifo_index checker is compatible with the V2 implementation. But the
ovl_fifo_index implementation has a change in the parameter order. The
simultaneous_push_pop parameter was moved to before the property_type parameter. So, the
assert_fifo_index checker has the following syntax:

assert_fifo_index
[#(severity_level, depth, push_width, pop_width, property_type, msg,

coverage_level, simultaneous_push_pop)]
instance_name (clock, reset, push, pop);

Table B-2. ovl_* Checker Types

ovl_always
ovl_always_on_edge
ovl_arbiter
ovl_bits
ovl_change
ovl_code_distance
ovl_cycle_sequence
ovl_decrement
ovl_delta
ovl_even_parity
ovl_fifo
ovl_fifo_index
ovl_frame
ovl_handshake
ovl_hold_value
ovl_implication
ovl_increment

ovl_memory_async
ovl_memory_sync
ovl_multiport_fifo
ovl_mutex
ovl_never
ovl_never_unknown
ovl_never_unknown_async
ovl_next
ovl_next_state
ovl_no_contention
ovl_no_overflow
ovl_no_transition
ovl_no_underflow
ovl_odd_parity
ovl_one_cold
ovl_one_hot
ovl_proposition

ovl_quiescent_state
ovl_range
ovl_reg_loaded
ovl_req_ack_unique
ovl_req_requires
ovl_stack
ovl_time
ovl_transition
ovl_unchange
ovl_valid_id
ovl_value
ovl_width
ovl_win_change
ovl_win_unchange
ovl_window
ovl_zero_one_hot

OVL Backward Compatibility

Accellera Standard OVL V2 LRM, 2.8.1 331
March 2014

Whereas the ovl_fifo_index checker has the following syntax:

ovl_fifo_index
[#(severity_level, depth, push_width, pop_width,

simultaneous_push_pop, property_type, msg, coverage_level,
clock_edge, reset_polarity, gating_type)]

instance_name (clock, reset, enable, push, pop, fire);

Accellera Standard OVL V2 LRM, 2.8.1332

OVL Backward Compatibility

March 2014

	Table of Contents
	Chapter 1 Introduction
	About this Manual
	Notational Conventions
	Assertion Syntax Format

	References

	Chapter 2 OVL Basics
	OVL Assertion Checkers
	HDL Implementations
	OVL V1-Style Checkers

	OVL Checker Characteristics
	Checker Class
	Checker Parameters/Generics
	severity_level
	property_type
	msg
	coverage_level
	clock_edge
	reset_polarity
	gating_type

	Checker Ports
	clock
	reset
	enable
	fire

	Assertion Checks
	X/Z Checks
	Explicit X/Z Checks
	Implicit X/Z Checks

	Cover Points
	Cover Groups

	Verilog OVL
	Library Directory Structure
	Use Model
	Setting the Verilog Implementation Language
	Instantiation in an SVA Interface Construct
	Limitations for Verilog-flavor PSL

	Generating Synthesizable Logic
	Enabling Assertion and Coverage Logic
	Asserting, Assuming and Ignoring Properties
	Monitoring Coverage

	Setting Checker Parameter Defaults
	Disabling Clock/Reset Gating
	Using a Global Reset
	Checking X and Z Values
	Reporting Assertion Information
	Limiting a Checker’s Reporting
	Reporting Initialization Messages
	End-of-simulation Signal to ovl_quiescent_state Checkers

	Fatal Error Processing

	Header Files
	std_ovl_defines.h
	std_ovl_init.h
	std_ovl_clock.h
	std_ovl_reset.h
	std_ovl_count.h
	std_ovl_cover.h
	std_ovl_task.h

	VHDL OVL
	Library Directory Structure
	Use Model
	Compiling the VHDL OVL
	OVL Compile Order for pure-VHDL checkers
	OVL Compile order for VHDL-flavor PSL

	Configuring the Library
	ovl_ctrl_record Record

	Checker example with PSL-VHDL flavor
	std_ulogic Wrappers
	Number of Checkers in a Simulation
	“2-state” and “X/Z-check” Assertions in VHDL
	Synthesizing the VHDL OVL Library

	Primary VHDL Packages
	std_ovl.vhd
	std_ovl_procs.vhd

	Chapter 3 OVL Checkers
	ovl_always
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	See also
	Example

	ovl_always_on_edge
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	See also
	Examples

	ovl_arbiter
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	ovl_bits
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	See also
	Examples

	ovl_change
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	See also
	Examples

	ovl_code_distance
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	ovl_coverage
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points

	See also
	Examples

	ovl_crc
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points

	See also
	Examples

	ovl_cycle_sequence
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	See also
	Examples

	ovl_decrement
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	Notes
	See also
	Examples

	ovl_delta
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups
	Errors

	Notes
	See also
	Examples

	ovl_even_parity
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	See also
	Examples

	ovl_fifo
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	See also

	ovl_fifo_index
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups
	Errors

	Notes
	See also
	Examples

	ovl_frame
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	Notes
	See also
	Examples

	ovl_handshake
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	See also
	Examples

	ovl_hold_value
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	ovl_implication
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	Notes
	See also
	Examples

	ovl_increment
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	Notes
	See also
	Examples

	ovl_memory_async
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	ovl_memory_sync
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	ovl_multiport_fifo
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	ovl_mutex
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	ovl_never
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	Notes
	See also
	Examples

	ovl_never_unknown
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	Notes
	See also
	Examples

	ovl_never_unknown_async
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	Notes
	See also
	Examples

	ovl_next
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	See also
	Examples

	ovl_next_state
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	ovl_no_contention
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	ovl_no_overflow
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups
	Errors

	Notes
	See also
	Examples

	ovl_no_transition
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	Notes
	See also
	Examples

	ovl_no_underflow
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups
	Errors

	Notes
	See also
	Examples

	ovl_odd_parity
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	See also
	Examples

	ovl_one_cold
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	Notes
	See also
	Examples

	ovl_one_hot
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	Notes
	See also
	Examples

	ovl_proposition
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	Notes
	See also
	Examples

	ovl_quiescent_state
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	Notes
	See also
	Examples

	ovl_range
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups
	Errors

	See also
	Examples

	ovl_reg_loaded
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	ovl_req_ack_unique
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	ovl_req_requires
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	ovl_stack
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	ovl_time
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	See also
	Examples

	ovl_transition
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	Notes
	See also
	Examples

	ovl_unchange
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	See also
	Examples

	ovl_valid_id
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	ovl_value
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	ovl_value_coverage
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points

	See also
	Examples

	ovl_width
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	See also
	Examples

	ovl_win_change
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	See also
	Examples

	ovl_win_unchange
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	See also
	Examples

	ovl_window
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	See also
	Examples

	ovl_xproduct_bit_coverage
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points

	See also
	Examples

	ovl_xproduct_value_coverage
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	See also

	Examples

	ovl_zero_one_hot
	Syntax
	Parameters/Generics
	Ports

	Description
	Assertion Checks
	Cover Points
	Cover Groups

	Notes
	See also
	Examples

	Appendix A OVL Macros
	Global Macros
	Internal Global Macros

	Macros Common to All Assertions
	Macros for Specific Assertions

	Appendix B OVL Backward Compatibility
	V2.3
	assert_fifo_index and ovl_fifo_index

	Documentation Feedback

