

Draft Standard for Security Annotation for Electronic Design Integration

4	April 2021
5	

1 Abstract: The standard is collateral-centric with a focus on security concerns; it applies to electrical 2 designs that are integrated into other circuits. The standard defines a methodology that (1) 3 identifies elements, such as input or output ports, that can influence the behavior of a critical section 4 5 6 7 within the design and (2) associates known security weaknesses based on the type of design and/or critical section. The methodology uses data objects, which are both human and machine readable, to capture security relevant information through the architectural and design phase of the electrical design to be consumed by an Integrator for their product lifecycle. The standard is 8 9 independent of existing standards and is not part of the electrical design itself.

10 Keywords: Security, RTL, attack surface, threat modeling, security weakness, mitigation, 11 hardware, circuit design, integrated circuit, SoC, ASIC, IP

12

1 Notices

Accellera Systems Initiative (Accellera) Standards documents are developed within Accellera and the Technical Committee of Accellera. Accellera develops its standards through a consensus development process, approved by its members and board of directors, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are members of Accellera and serve without compensation. While Accellera administers the process and establishes rules to promote fairness in the consensus development process, Accellera does not independently evaluate, test, or verify the accuracy of any of the information contained in its standards.

9 Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, 10 property or other damage, of any nature whatsoever, whether special, indirect, consequential, or 11 compensatory, directly or indirectly resulting from the publication, use of, or reliance upon this, or any other 12 Accellera Standard document.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims any express or implied warranty, including any implied warranty of merchantability or suitability for a specific purpose, or that the use of the material contained herein is free from patent infringement. Accellera Standards documents are supplied "AS IS."

17 The existence of an Accellera Standard does not imply that there are no other ways to produce, test, measure, 18 purchase, market, or provide other goods and services related to the scope of an Accellera Standard. 19 Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change due 20 to developments in the state of the art and comments received from users of the standard. Every Accellera 21 Standard is subjected to review periodically for revision and update. Users are cautioned to check to 22 determine that they have the latest edition of any Accellera Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or other services for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty owed by any other person or entity to another. Any person utilizing this, and any other Accellera Standards document, should rely upon the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific applications. When the need for interpretations is brought to the attention of Accellera, Accellera will initiate action to prepare appropriate responses. Since Accellera Standards represent a consensus of concerned interests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason, Accellera and the members of its Working Groups are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal consideration.

35 Comments for revision of Accellera Standards are welcome from any interested party, regardless of 36 membership affiliation with Accellera. Suggestions for changes in documents should be in the form of a 37 proposed change of text, together with appropriate supporting comments. Comments on standards and 38 requests for interpretations should be addressed to:

39 Accellera Systems Initiative

- 40 8698 Elk Grove Blvd Suite 1, #114
- 41 Elk Grove, CA 95624
- 42 USA
- 43 Note: Attention is called to the possibility that implementation of this standard may require use of
 44 subject matter covered by patent rights. By publication of this standard, no position is taken with
 45 respect to the existence or validity of any patent rights in connection therewith. Accellera shall not be

- 1 responsible for identifying patents for which a license may be required by an Accellera standard or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.
- 3 Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or 4 trademarks to indicate compliance with the materials set forth herein.

Authorization to photocopy portions of any individual standard for internal or personal use must be granted by Accellera, provided that permission is obtained from and any required fee is paid to Accellera. To arrange for authorization please contact Lynn Garibaldi, Accellera Systems Initiative, 8698 Elk Grove Blvd Suite 1, #114, Elk Grove, CA 95624, phone (916) 670-1056, e-mail lynn@accellera.org. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained from Accellera. Suggestions for improvements to this standard are welcome and should be sent to the IPSA public

11 Community Forum at https://forums.accellera.org/forum/46-ip-security/.

Participants 1

2 At the time this draft standard was completed, the Accellera IPSA Working Group had the following 3 membership:

4

5

Brent Sherman, Intel Corp, Chair Mike Borza, Synopsys, Vice Chair

- 7 Sohrab Aftabjahani, Intel Corp.
- 8 Adam Cron, Synopsys
- 9 Monica Farkash, AMD
- 10 Nicole Fern, Tortuga Logic
- 11 Dave Graubart, Allied Member
- 12 John Hallman, OneSpin
- 13 Solutions
- 14 Kathy Hayashi, Qualcomm, Inc.
- 15 Nathan Mandelke, Cadence
- 16 Design Systems, Inc.
- 34

- 17 Jean-Philippe Martin, Intel Corp.
- 18 Steven McNeil, Xilinx, Inc.
 - Michael Munsey, Methodics,
 - Inc.
- 19 20 21 22 23 24 25 Anders Nordstrom, Tortuga
 - Logic
 - James Pangburn, Cadence
 - Design Systems, Inc.
 - Ambar Sarkar, NVIDIA Corp.
- 26 27 28 29 Yaron Schiller, Cadence Design Systems, Inc.
 - Adam Sherer, Cadence Design
 - Systems, Inc.
- 30 Ireneusz Sobanski, Intel Corp. 31 Badhri Uppiliappan, Analog
- 32
 - Devices, Inc.
- 33 Jesse Wyant, Intel Corp.

1 Introduction

A System on Chip (SoC) or Application Specific Integrated Circuit (ASIC) is comprised of multiple components referred to as Intellectual Property (IP) blocks or just IP. These blocks come from multiple sources such as internal development teams, IP suppliers, tools to generate IP, etc. Typically, the SoC/ASIC owner integrates multiple IPs from multiple sources, which raises concerns about security risk. This standard addresses these concerns by introducing a methodology and formalized data objects that identifies security risks an Integrator might inherit. These concerns may be addressed by an Integrator to make an informed decision at the time of IP integration. The options may be to select another IP with less risk, implement mitigations to address the concerns, or simply decide the risks are out of scope for the product.

10 The methodology uses two approaches to identify security concerns. One is to identify attack points that can 11 be used to compromise the security of the IP block. These attack points are what an adversary would use to 12 perform a malicious act on the design. By presenting this information, the Integrator can decide how to 13 manage the associated risks. The other approach is to identify and associate known security concerns to an 14 IP block. These concerns have been discovered, classified and published by fellow travelers in the industry, 15 academia, or security researchers. Anyone researching security may be able to contribute to a knowledge 16 base.

17 The standard is primarily directed towards IP developers and integrators. It is design, product, and tool 18 independent. Users of this standard will be able to provide consistent security collateral in a uniform format.

1 Contents

2	Notices	3
3 4 5	1. Overview 1.1 Scope 1.2 Purpose	1 1 1
6	1.3 Word usage	2
7	2. Normative references	2
8	3. Definitions, acronyms, and abbreviations	2
9	3.1 Definitions	2
10	3.2 Acronyms and abbreviations	
11	4. Background	5
12	5. SA-EDI Methodology	6
13	5.1 IP Bundle	7
14	6. Security Weakness Knowledge Base	
15	6.1 Format	10
16	6.2 Specifications	11
17	7. Data Objects	11
18	7.1 Data Object Language	12
19	7.2 Asset Definition	12
20	7.2.1 Specifications	13
21	7.3 Database	13
22	7.3.1 Specifications	14
23	7.4 Element	14
24	7.4.1 Specifications	15
25	7.5 Attack Points Security Objective (APSO)	15
26	7.5.1 Specifications	16
27	8. Threat Model	17
28	9. Workflow Compliance	17
29	Annex A : Data Object JSON Schema	19
30	A.1 Asset Definition	19
31	A.2 Database	19
32	A.3 Element	19
33	A.4 Attack Points Security Objective	19
34	A.5 SA-EDI Data Object	20
35	Annex B : Use-case Example	22
30 27	B.1 Watchdog IP	
37	B.I.I Kegisters	23
38	B.2 Workflow Steps	24
39	B.2.1 WDIP Security Evaluation	29
40	Annex C : WDIP Source Code	30

1	C.1 wd top.v	
2	C.2 wd control.v	
3	C.3 wd ⁻ count.v	
	-	
4	Bibliography	
5		
5		

Draft Standard for Security Annotation 1 for Electronic Design Integration 2

3 1. Overview

4 The SA-EDI standard defines a specification that documents security concerns for hardware IP and its 5 associated components when integrated into an Integrated Circuit. With the standard, IP Providers can 6 identify security concerns to either: 1) mitigate in their IP; or 2) disclose to the Integrator to address at their 7 level.

8 The standard is structured as follows: Section 4 introduces a background on the existing IP development 9 process; Section 5 describes the proposed methodology to support the SA-EDI standard; Section 6 introduces 10 the concept of a security weakness knowledge base which is comprised of known security concerns; Section 11 7 outlines the data objects in the standard; Section 8 is the threat model which is the end result; and Section 12 9 provides guidelines for compliance to the standard. The Annex sections provide additional information to 13 help use the standard: Annex A outlines the JSON schema for the data objects; Annex B provides an example 14 application to an IP; and Annex C contains the source code of the example IP.

15 The standard is completely contained in this document and any references to whitepapers such as [B1] are 16 for background information only and are not considered part of the standard.

17 1.1 Scope

18 The standard defines data objects to identify critical elements in a digital hardware IP design and their 19 associated security concerns. It defines the format and relationship of data objects that may be generated by 20 tools during the hardware development process. Since the standard is external to the IP design, it can be 21 applied to existing designs even if the hardware source (e.g., RTL) is encrypted.

22 The standard assumes the relationship between the IP Provider and Integrator is trusted. The standard does 23 not address issues such as supplier credentialing; it simply provides a mechanism for an IP Provider to 24 identify security concerns to an Integrator. Secure integration requires (among other things) that IP suppliers 25 act in good faith by providing complete collateral.

26 1.2 Purpose

- 27 The intent of the standard is to identify known security concerns, documented in a knowledge base, associated
- 28 29 with an asset and/or family type during IP integration. The IP Provider uses the standard to identify assets
- in the design that require a security objective (e.g., Confidentiality, Integrity, Availability) and elements (e.g., 30
- ports, parameters, etc.) that can compromise the objective. The Integrator uses the collateral to create a threat

- 1 model with identified mitigations to support the security objective. The methodology provides the means to
- 2 validate security assurance collateral to an IP design.

3 1.3 Word usage

- 4 The word *shall* indicates mandatory requirements strictly to be followed in order to conform to the standard 5 and from which no deviation is permitted (shall equals is required to).
- 6 The word *should* indicates that among several possibilities one is recommended as particularly suitable,
- 7 without mentioning or excluding others; or that a certain course of action is preferred but not necessarily
- 8 required (should equals is recommended that).
- 9 The word *may* is used to indicate a course of action permissible within the limits of the standard (may equals 10 is permitted to).
- 11 The word *can* is used for statements of possibility and capability, whether material, physical, or causal (can equals is able to).

13 **2. Normative references**

14 The following referenced documents, if any are listed in this section, are indispensable for the application of 15 this document (i.e., they must be understood and used, so each referenced document is cited in text and its 16 relationship to this document is explained). For dated references, only the edition cited applies. For undated

17 references, the latest edition of the referenced document (including any amendments or corrigenda) applies.

18 **3. Definitions, acronyms, and abbreviations**

19 **3.1 Definitions**

- 20 For the purposes of this document, the following terms and definitions apply.
- 21 Adversary: A malicious entity that prevents security objectives from being achieved
- 22 Asset: Anything of value or importance that is used, produced, or protected within the IP
- 23 Attack Point: An access location or means through which a threat can be realized against an asset
- 24 Attack Surface: A set of attack points (can be applied to multiple assets).
- 25 **Concern (Consequence)**: The potential harm that a threat poses to an asset

Fully Qualified Name: In Verilog, a design element with its module name. Format:
 cmodule_name>.<asset_name>. In VHDL, a design element with its component name. Format:
 component name>.<asset name>. Other languages may have corresponding notations.

- 29 Integrated Circuit: An electronic design (e.g. SoC, ASIC, etc.) that consists of multiple IPs
- 30 **Integrator**: The entity that integrates IP into an electronic design

- 1 IP: Intellectual Property The RTL or other design representation that is the subject of this standard
- IP Bundle: The collateral that is supplied by the IP Provider which contains everything an Integrator needs to incorporate the IP
- 4 **IP Provider**: The entity that supplies an IP
- 5 **Mitigation**: A solution that reduces the risk or consequence of an attack
- 6 **RTL**: Register-Transfer Level A design abstraction that models a digital circuit
- 7 Security Objective: A measurable way to achieve a security goal. For example, a security goal may be
- 8 "protect an asset". A security objective would be "Confidentiality" on that asset as a means of protection.
- 9 This standard identifies Confidentiality, Integrity, and Availability [B3] as security objectives.
- 10 Threat (Attack): Anything that can potentially adversely affect an asset
- 11 Threat Model: A collection of threats that are in scope for an electronic design
- 12 Vulnerability: A weakness in the IP that could be exploited
- 13 Weakness: A way in which an IP fails to protect an asset

14 **3.2 Acronyms and abbreviations**

ADC	Analog-Digital Converter
AES	Advanced Encryption Standard
API	Application Programming Interface
APIC	Advanced Programmable Interrupt Controller
APSO	Attack Points Security Objective
ASIC	Application Specific Integrated Circuit
BIST	Built-In Self-Test
CDMA/GSM	Code Division Multiple Access / Global System for Mobile
CIA	Confidentiality, Integrity, Availability
CISC	Complex Instruction Set Computer
CPU	Central Processing Unit
CWE	Common Weakness Enumeration
DAC	Digital-Analog Converter

DDR	Double Data Rate	
DRAM/SRAM	Dynamic Random-Access Memory / Static Random-Access Memory	
DSP	Digital Signal Processor	
EDA	Electronic Design Automation	
EEPROM	Electrically Erasable Programmable ROM	
FPGA	Field Programmable Gate Array	
FSM	Finite State Machine	
GPIO	General Purpose Input/Output	
GPS	Global Positioning System	
GPU	General Processing Unit	
HDL	Hardware Description Language	
НМАС	Keyed-Hash Message Authentication Code	
I2C	Inter-IC bus	
IC	Integrated Circuit	
IP	Intellectual Property	
IPSA	IP Security Assurance (Workgroup)	
JSON	JavaScript Object Notation	
JTAG	Joint Test Action Group	
LSB	Least Significant Bit	
MMC	Memory Management Controller	
MSB	Most Significant Bit	
NoC	Network on Chip	
NVRAM	Non-Volatile RAM	
OTP	One-Time Programmable	
PCIe	Peripheral Component Interconnect Express	
РНҮ	Physical layer	

RISC	Reduced Instruction Set Computer
RNG	Random Number Generator
ROM	Read-Only Memory
RSA	Rivest, Shamir, and Adelman
RTL	Register-Transfer Level
SA-EDI	Security Annotation for Electronic Design Integration
SHA	Secure Hash Algorithm
SoC	System on Chip
SWKB	Security Weakness Knowledge Base
TPU	Tensor Processing Unit
URI	Uniform Resource Identifier
USB	Universal Serial Bus
VHDL	Very High Speed Integrated Circuit Hardware Description Language

2 **4. Background**

In today's IP development and delivery process, there's no standard guidance in security assurance. At the basic level, an IP is defined based on standards such as Verilog, VHDL, etc. that are compiled and synthesized using EDA tools to produce outputs such as netlists, place & route databases, etc. As it pertains to the standard in this document, the focus of discussion is the IP design (i.e. RTL), gate-level netlist, and any testbench that's produced. At a high level, the workflow is shown in Figure 1.

9

- 1 The file extensions shown are examples only to establish the context of what is contained in an IP Bundle.
- 2 Additionally, the "bundle" may contain files such as documentation, executables, configuration files, etc.
- $\overline{3}$ This bundle is what is being offered as an IP for the Integrator to incorporate into their product (e.g. SoC), as 4
- shown in Figure 2.

6

Figure 2, IP Delivery

7 The Integrator will unpack the IP Bundle to extract its contents and execute simulation tests to prove it is 8 functionally sound. After performing initial sanity checks or functional verification, the Integrator 9 incorporates the IP into the SoC. Once integrated, additional tests are performed to verify the IP is behaving 10 properly with other IPs in the product. The process is repeated for each IP that is integrated into the SoC.

11 There is a notable gap in the IP development and delivery workflow, which does not include a statement of 12 security concerns that an Integrator inherits or introduces when accepting an IP from a provider. This 13 standard will provide guidance as to what IP security assurance collateral is needed and how the collateral

14 should be consumed to close this gap.

15 5. SA-EDI Methodology

16 The standard introduces new collateral into the IP bundle which is shown in Figure 3. This collateral includes 17 data objects that represent assets, database, elements, and attack points and security objectives. These objects

18 are discussed in detail in section 7. As additions, they can be added to an existing workflow without

19 modification to the IP design.

1

Figure 3, SA-EDI IP Bundle

4 The Asset Definition data object identifies critical or valued material within the IP. It also contains a 5 Database data object that provides information about a Security Weakness Knowledge Base. These data 6 7 objects are inputs into EDA tools that create Element data objects. The Element data objects contain ports and parameters that influence the behavior of the asset and include potential security weaknesses that are 8 associated with the asset and/or IP type. The Element data objects are used to create Attack Points Security 9 Objective (APSO) data objects. APSO data objects associate a security objective such as confidentiality, 10 integrity, availability, to a list of ports or parameters thus creating an attack surface. These APSO data objects 11 eventually build the threat model for the IP Integrator to use. The details of these objects are in later sections 12 of this document.

13 The data objects in Figure 3 are shown as JSON format. This is detailed later in section 7.1.

14 It is also worth noting that the Element objects can be created manually without an EDA tool.

15 The database labeled "Security Weakness Knowledge Base" contains security weaknesses that are known

16 due to industry experience and/or security researchers. The standard allows the use of multiple databases

17 from multiple sources. The details of how such a knowledge base can be utilized are listed in a later section.

18 **5.1 IP Bundle**

19 Upon receiving the IP Bundle, the Integrator will use the new data objects to create a threat model that is 20 specific to the integrated circuit with respect to the IP. This is shown in Figure 4. The Integrator will repeat 21 some of the steps that the IP Provider performed in order to verify that the SA-EDI data objects were indeed

derived from the IP definition. Performing this verification is optional, however highly recommended by the

23 standard.

5 The Integrator, using the Asset Definition and Database in the bundle and the same Security Weakness 6 7 Knowledge Base, generates an Element data object. This object is labeled "Element*" in Figure 4 and should correspond to the same assets that were defined in the IP bundle. Once generated, the Integrator compares 8 the contents of the Element* object to the contents of the Element object in the bundle. This comparison can 9 be done by visual inspection or by using a tool. If the contents are the same, then the Integrator knows the 10 security assurance collateral corresponds to the RTL and can proceed with integration. If the contents are 11 not the same, then the Integrator and the IP Provider need to resolve the differences before integrating the IP 12 into the IC. Mismatches may be caused by RTL changes after the Element object was generated or that there 13 was an error in the generation of the Element object itself.

14 The Integrator then reviews the Attack Point Security Objective (APSO) data objects in the bundle to 15 determine which ones are in scope for the IC. This will become the threat model which contains mitigations 16 to be verified. The Integrator may also create additional APSO objects that are product specific for this IP. 17 These additions become part of the IC's threat model for verification.

18 6. Security Weakness Knowledge Base

The Security Weakness Knowledge Base (SWKB) is a database or repository that contains security concerns that are associated with hardware IP and its integration. The term SWKB is generic and does not represent a specific database. It is instead used to reference existing databases such as the Common Weakness Enumeration (CWE) [B2] or even a proprietary database. The standard allows for the use of multiple databases in multiple locations. Additionally, the SWKB should support an API that allows for software queries in order to aid in automation.

The standard requires that a SWKB support searchability on IP and asset categories or types. This requirement makes it possible for security weaknesses to be associated with a specific IP or asset. The IP family types are listed in Table 1. Along with the types are definitions and examples to help provide more clarification about the IP family. This table has the capability to support additional IP family types, which can then be shared with Integrators to preserve the associations and methodology workflow. 1 The family types defined in Table 1 are intended to be high-level, generic classifications. They should not

2 be used as detailed descriptions of the IP itself. Therefore, an IP may be classified by several family types

3 and the standard does not prohibit assigning multiple family types to a single IP.

4

Table 1, IP Family Types

#	Name	Definition	Examples
1	Accelerator	IP dedicated to offload a specific workload to enhance	DSP, TPU, packet processing,
		performance	mathematical, compression
2	Analog & Mixed-	IP that controls or senses the electricals for	PHY, ADC, DAC
	Signal	communication, which receives or transmits signals	
		conditioned outside of a system's digital domain	
3	Audio/Video	IP designed to manipulate audio/video data	Coders/Decoders, speech
			recognition, format converters
4	Bus/Interface	IP implementing an interconnect among elements in a	I2C, PCIe, DDR, MMC, USB,
		computing system	GPIO
5	Communications	IP designed to transmit/receive information	Modulator/Demodulator,
			802.11, Bluetooth,
			CDMA/GSM
6	Controllers	A circuit hard-wired (e.g. Finite State Machine) to	Arbiter, APIC, USB, Peripheral,
		react in a closed-loop control system or other limited	Memory, Storage
		context, to control another entity	
7	Counter/Timer	IP reflecting the passage of time in oscillations or	Real Time Clock, Watchdog,
		human units	Monotonic Counter
8	Memories	Volatile (transient) data storage	DRAM, SRAM
9	Microcontroller	A specialized processor acting as a programmable controller	8051, Nios
10	Power Management	IP which controls and/or monitors the power state of a	Voltage regulators, power
		system	controllers or monitors
11	Processors	A programmable computing engine	CPU, GPU, TPU
12	Security	IP designed to protect assets	Cryptography, authorization,
			tamper detection, access
			controls, RNG
13	Storage	non-volatile (permanent) data storage	EEPROM, eFuse, flash, ROM,
			OTP, NVRAM
14	Test/Debug	IP designed to verify functionality and identify root	JTAG, BIST, boundary scan,
		cause of defects	pattern generator
15	Transducers	IP which converts energy from one form to another,	sensors, actuators
		such as physical to electrical	
16	<user defined=""></user>	This type is used to accommodate families that have	UD: CustomIP
		not been defined in this table (e.g. proprietary IP). To	
		add a family, the value should have the prefix "UD:".	

5

6 Table 2 shows the classification types for assets. These types provide more information about the asset (e.g., 7 what makes it an asset) and can be used to associate additional security weaknesses to the IP itself. Similar 8 to the IP family types, the asset types are intended to be high-level, generic classifications in which several

9 may be used to describe a single asset.

ш	Nama		Enormalia
Ħ	name	Definition	Examples
1	Critical	Material that is critical for proper functionality.	Timers/Counters, clock generators
		Without this asset, the IP would not be able to	
		function.	
2	Secret	Material that requires confidentiality and should	Password, cryptographic keys
		not be accessible outside the IP	
3	Sensitive	Material that requires integrity but not	Root of Trust (e.g. Asymmetric public
		necessarily confidentiality.	key), fuse/OTP
4	Control	Material used to alter and/or control the state of	FSM, control register
		the IP. This material can also setup or	, e
		configure the IP.	
5	Cryptographic	Material that is part of a cryptographic	AES, RSA, SHA, HMAC, RNG
		operation	
6	Code/Data	Material that contains information which can Storage (Volatile/Non-volatile)	
		alter the behavior of the IP	
7	Compute	Material that is part of an execution engine that	CISC, RISC, CPU, GPU
	•	operates on opcodes or instructions	
8	<user defined=""></user>	This type is used to accommodate asset types	UD: CustomIP
		that have not been defined in this table (e.g.	
		proprietary IP). To add an asset type, the value	
		shall have the prefix "UD:".	

Table 2, Asset Type

2

3 **6.1 Format**

4 To support the standard, a SWKB shall provide the following attributes for each entry:

5 a) Title : A brief and high-level description about the weakness, normally a single sentence or p	phrase.
--	---------

- b) Reference number: A unique identifier within the knowledge base. It will be used in the Element data object (Section 7.4) to reference a specific entry.
- 8 c) **Description**: A detailed description of why the weakness is a problem or concern. It may include possible unwanted behaviors, affected resources, etc.
- 10 d) **Consequence**: A classification of the risk(s) due to the weakness as confidentiality, integrity, and/or availability. The impact of the consequence should be captured as well.
- e) Applicability: A list of IP families (Table 1) and/or asset types (Table 2) that may be impacted by the security weakness.
- f) Modes of Introduction: A list of lifecycle phases in which the weakness could have been introduced. Some examples are architecture, design, implementation, integration, manufacturing or provisioning, etc.
- g) Mitigations: This attribute lists techniques that are intended to minimize the severity of the weakness. The attribute should include relevant lifecycle phases in which mitigations can be introduced. See reference f) above.
- Table 1 and Table 2 are used alone or in combination to associate security weaknesses to an Asset Definition data object. In addition, the standard allows the use of any keywords or text in the data fields of an entry.
- 22

1 6.2 Specifications

2 The rules are as follows:

- a) The SWKB database should reference IP Family types as shown in Table 1, column "Name" into the appropriate entries by string value.
- 5 b) The SWKB database should reference Asset Functionality types as shown in Table 2, column 6 "Name" into the appropriate entries by string value.

7 7. Data Objects

8 The data objects (Asset Definition, Database, Element, and Attack Points Security Objective) and SWKB are 9 linked via attributes as shown in Figure 5. Please note that the associated attributes between the data objects 10 are shown and not the complete list of attributes in each object. The variable n in the diagram represents one 11 or more objects and not equivalence or a specific value. The Asset Definition object uses the attribute 12 Database ID to reference a SWKB(s). This reference is linked to the attribute ID of the Database object. 13 The Database object defines the properties of a SWKB. The Asset Definition object uses Family and Type 14 attributes to identify entries in the SWKB that match the values in (e) in section 6.1. The Element object 15 uses Security Weakness Reference attribute to link to those entries in the SWKB. This attribute matches the 16 values in (b) in section 6.1. The Asset Definition and Element objects are linked by the Name attribute as 17 defined in the Asset Definition object.

18 The Element object is used to create the Attack Points Security Objective (APSO) data object and the 19 attributes Asset Name, Ports, Parameters, and Security Weakness Reference are the associations between 20 them. The value in the Asset Name attribute matches the Name attribute of the Asset Definition object.

21 There may be circumstances in which an Element object is not created, however there is still a need to create

22 an APSO object to identify a security objective to an asset. In this case, the APSO object may be created

23 from the Asset Definition object and the attribute *Asset Name* will be associated to *Name*, respectively.

4 7.1 Data Object Language

Data objects shall be machine readable and should be human readable. The standard uses JavaScript Object Notation (JSON)[B4] as its data modeling language. JSON was chosen due to its adaptability and small footprint for easier documentation. The examples use JSON 2019-09. However, any version greater than or equal to Draft 4 can be used since required field capabilities were introduced in Draft 4, which is needed to support attributes that are required by the standard.

10 The JSON schema for each of the data objects are defined in section Annex A. The schema may be extended 11 to support future attributes and/or specific use-cases. For simplicity, data objects and objects are equivalent 12 throughout the standard.

13 **7.2 Asset Definition**

14 The Asset Definition data object is the critical dependency in the standard. All other data objects are derived 15 from this object. Therefore, defining assets correctly is crucial to completing a proper threat model.

16 The Asset Definition object is used to identify assets within the IP. An asset is anything of value or 17 importance that is critical to proper behavior which require security objective protections. An asset can be 18 identified as a port, module, register, or another object in the design. The paper [B1] provides more 19 information, along with examples, about how to possibly identify assets within an IP. In addition, there's a 20 use-case example in Annex B that highlights the complete methodology.

Once an asset is identified, its definition is comprised of the attributes defined in Table 3. The attribute *Name* is used to reference the asset in RTL and shall match its corresponding text in the source. Each asset will have its own Asset Definition data object. The attributes are provided by the IP Developer and will be used later to create the Element data object.

Table 3, J	Asset	Definition	Data	Object
------------	-------	------------	------	--------

Attribute	Required	Туре	Definition
Name	Yes	String (case-sensitive ¹)	Full hierarchical path name of the asset as defined in the RTL source
Description	No	String	Brief description about the asset (e.g., what makes it an asset, its purpose, etc.). This is not a required field however it is strongly recommended since it provides useful information to the IP Integrator.
Family	Yes	Array of Strings	Describes the IP type or family. The values are listed in Table 1. The value may be the numeric string or string name. There may be more than one type that is applicable.
Туре	Yes	Array of Strings Describes the asset type. The values are listed in Table 2. value may be the numeric string or string name. There ma more than one type that is applicable.	
Database_ID	No	Array of Strings	Reference to a SWKB. The string should match the attribute value of <i>ID</i> in Table 4. This is an array to support multiple databases.

2

3 7.2.1 Specifications

4 The rules are as follows:

- 5 a) An IP may have multiple assets.
- 6 b) An Asset Definition object shall reference a single asset.
- c) If the asset is an array, it is assumed the entire array is the asset unless a specified range is included in the *Name* attribute.
- 9 d) If an asset is in several ranges of an array, then each range shall have its own Asset Definition object.

10 7.3 Database

11 The Database data object is used to provide details about a security weaknesses database that is to be used in 12 the methodology flow. A Database object is associated to an Asset Definition object via the *ID* attribute in 13 Table 4. Since the methodology supports the use of multiple databases, there may be many Database objects

14 associated to an Asset Definition object.

15 The Database object is not required if a security weaknesses database is not used.

¹ Case-sensitivity may be dependent on the language of the RTL source.

Attribute	Required	Туре	Definition
ID	Yes	String	A unique identifier that is associated to a SWKB. This may be the name of the database. This attribute is referenced in the Asset Definition object in the <i>Database_ID</i> attribute (Table 3)
Description	No	String	Brief description about the database (e.g. how to use it, types of weaknesses, etc.)
URI	Yes	String	URI locator of the security weaknesses database
Version	Yes	String	Version identifier of the security weaknesses database

Table 4, Database Data Object

2

3 7.3.1 Specifications

4 The rules are as follows:

5 a) Every SWKB version shall have at least one Database object associated with it.

6 b) A Database object may be associated with one or more Asset Definition objects.

7 7.4 Element

8 The Element data object is created when Asset Definition object(s) are defined. An Asset Definition object 9 provides enough information for a tool (e.g., EDA) to generate Element objects. An Element object defines 10 the top module influencers (i.e., elements) of the IP that can affect and/or observe the behavior of the asset. 11 These elements may include input/output ports and/or configuration parameters in the RTL. These are access 12 points that either: 1) an adversary can use to affect the asset's behavior, or 2) an Integrator needs to take into 13 consideration to ensure proper protections are in place.

An Element object is associated with an Asset Definition object via the Asset Identifier, which is defined in section 7.2. Every Asset Definition object shall have at least one associated Element object. Element objects are categorized by the attribute *Direction* shown in Table 5. This attribute represents the direction of influence for the *Ports* attribute. Therefore, the signals listed in *Ports* shall all be in one direction. If a port is bidirectional, it may be listed in both the "Input" and "Output" Element objects.

Table 5, Element Data Object

Attribute	Required	Туре	Definition
Asset Name	Yes	String	Reference to the attribute Name as defined in Table 3
Direction	Yes	Enumeration	Defines the direction of the <i>Ports</i> attribute: 1. Input 2. Output
Security Weakness Reference	No	Array of Strings	Security weakness reference(s) from the SWKB. The format is dependent on the format of the entries in the database.
Ports	Yes	Array of Strings (case-sensitive ²)	Ports exposed at the integration level that influence or observe the behavior of an asset
Parameters No Array of Strings (case-sensitive ²)		Array of Strings (case-sensitive ²)	Configuration parameters in the RTL that are associated with the asset. Since parameters are language dependent, the text should match the syntax of the language.

2

3 7.4.1 Specifications

- 4 The rules are as follows:
- 5 a) An Element object shall reference only one Asset Definition object.
- 6 b) No more than one "Input" Element object shall reference the same Asset Definition object.
- 7 c) No more than one "Output" Element object shall reference the same Asset Definition object.
- 8 d) The Asset Name attribute must match the text, including case, in the attribute Name in the Asset
 9 Definition object.
- e) If multiple Database objects are defined in the Asset Definition object then each entry in the attribute
 Security Weakness Reference shall include the value of *ID* in Table 4.

12 7.5 Attack Points Security Objective (APSO)

13 The Attack Points Security Objective (APSO) data object is the starting point for the Integrator to understand 14 the inherited security concerns and objectives. The intent of the APSO object is to assign a security objective 15 to an attack surface of an asset and any conditions that may violate that objective. It may be derived directly 16 from Element objects or an Asset Definition object if there are side-channel concerns to address. The 17 supported security objectives are Confidentiality, Integrity, and Availability which are aligned with the 18 definitions in the NIST SP 800-100 handbook[B3]. The APSO object may include applicable security 19 weakness references identified in the Element object(s).

An APSO object may be created without an association to an Element object. An asset may lack a fan-in and/or fan-out that reaches the IP boundary. In this case, there will be no need for an Element object, but there may be security objectives pertaining to the asset, for which an APSO object is required.

An example could be the entropy source of a random number generator (RNG) integrated in the IP. This entropy source might not be exposed to the integration layer via a port, so there will be no Element object associated to the Asset Definition object. However, the asset may still require a security objective (e.g., Integrity), therefore an APSO object may be created with the *Attack Points* attribute empty. These types of

² Case-sensitivity may be dependent on the language of the RTL source.

1 APSO objects are used to identify implicit security concerns such as side-channel or injection attack points

2 associated with a particular asset.

3 An IP Provider may create APSO objects that address security objectives external to the IP. These objects

4 are intended to provide additional integration guidance. For example, an asset's port may have requirements

5 to support a security objective, such as Availability. In this case, the *Description* attribute could recommend

6 that "this port should be directly connected to the IC's reset logic and not gated by any logic". This object

7 provides additional guidance on how the IP should be integrated.

8

Table 6, APSO Data Object

Attribute	Required	Туре	Definition	
Name	Yes	String	Unique identifier for the security objective that is associated with this <i>Asset Name</i> . The <i>Name</i> need not be unique across multiple assets.	
Asset Name	Asset Name Yes String		Reference to the Name attribute in Table 3	
Security Objective	Yes	Describes the security objective required for the asset. There only be one security objective identified per APSO object. Enumeration 1. Confidentiality 2. Integrity 3. Availability		
Description	No	String	Additional information about the security objective	
Condition No SVA		SVA expression	Condition under which the security objective is violated, expressed in SystemVerilog Assertion (SVA) syntax. An example may be a lock bit, which protects the integrity of a register, not being enabled. All RTL signals used in the expression should be qualified such that it can be evaluated at the IP top level.	
Security Weakness Reference	No	Array of Strings	Reference to <i>Security Weaknesses Reference</i> attribute identified in Table 5.	
Additional Security Weaknesses	No	Array of Strings	Additional weaknesses that were not identified in attribute <i>Security Weakness Reference</i> . These can be newly discovered or use-case/customer specific weaknesses.	
Attack Points No Array of Strings Ports listed		Array of Strings	Ports listed in Table 5 that are associated with this security objective	
Parameters No Array of Strings Configuration parameters listed is security objective		Configuration parameters listed in Table 5 that are associated with this security objective		

9

10 **7.5.1 Specifications**

- 11 The rules are as follows:
- 12 a) The combination of *Name* and *Asset Name* shall be unique.
- 13 b) An APSO object shall have exactly one Security Objective defined.
- 14 c) An APSO object shall apply to exactly one Asset Definition object.
- d) An APSO object may have no associated Element objects, in which case the attribute *Attack Points* shall be empty.

1 8. Threat Model

2 The next step in the methodology is the creation of a threat model for the IC. This is performed by the 3 Integrator and may be created from applicable APSO objects. The APSO objects may come from both the 4 IP Provider and the Integrator.

5 APSO objects are based on the architecture and design of the IP as a standalone component. Additionally, 6 the IP Provider may have created APSO objects based on potential use-cases of the IP in an integrated circuit 7 such as an SoC. When the Integrator examines the APSO objects, some may not be relevant to the IC. For 8 example, there may be an APSO object that addresses confidentiality concerns on the counter of a watchdog ğ timer, the counter being the asset. The concern is that by leaking the count value, an attacker could gain an 10 advantage (e.g. the length of time remaining to launch an exploit). This may not be relevant to the security 11 of the IC. If the watchdog is being used for boot ROM execution and gets disabled when this execution is 12 finished, confidentiality is probably not an objective due to the limited agents that are out of reset at the time.

- 13 Therefore, this APSO object would not apply to the use-case of the IC.
- 14 Once the Integrator has evaluated which IP level APSO objects are in scope for the IC, the next step is to 15 identify which IC level APSO objects are relevant to the integration of the IP. Using the watchdog example, 16 the Integrator may add an APSO object that pertains to the availability of the watchdog's reset assertion due

17 to a timeout. The object would have the security objective Availability to ensure that there is no gating logic

18 on the watchdog reset.

19 When the IC level APSO objects have been created, the integration Threat Model is complete for the IP. The

20 standard does not define the format of a threat model beyond the APSO data object definition. This allows

- 21 the flexibility of converting APSO objects into other formats that align with an industry or company-specific
- 22 verification process.

23 9. Workflow Compliance

24 The intent of this section is to state the responsibilities of both the IP Provider and Integrator in the workflow. 25 A compliant IP Bundle includes the applicable Asset Definition, Database, Element, and APSO data objects. 26 See section 7.5 for cases where an Element object is not required. See section 7.3 for cases where a Database 27 object is not required. Table 7 shows the steps of the workflow. Steps #1-5 can be followed by an IP Provider 28 to create a compliant IP Bundle. Steps #6-11 can be followed by an Integrator to integrate and verify a 29 compliant IP Bundle.

> 17 Copyright © 2021 Accellera. All rights reserved. This is an unapproved Accellera Standards Draft, subject to change.

Table 7, Workflow

Step#	Owner	Details	Output
1	IP Provider	Identify a database of known weaknesses and create a Database object(s)	Table 4,
			Database Data
			Object
2	IP Provider	Identify asset(s) in the IP and create an Asset Definition object(s) for each	Table 3, Asset
		asset	Definition Data
			Object
3	IP Provider	Using the output of step $\#1$ and $\#2$, generate the Element object(s) using an	Table 5,
		EDA tool. This step may also be done manually.	Element Data
<u> </u>			Object
4	IP Provider	Using the output of step #3, create Attack Points Security Objective object(s)	Table 6, APSO
-	ID D 1		Data Object
5	IP Provider	Bundle all the data objects created in steps #1-4 in the IP delivery package	IP Bundle
6	Integrator	Using the output of step #5, repeat step #3 to regenerate the Element object(s)	Table 5,
		In a file for comparison. This requires that the integrator has access to the	Element Data
		RTL source. If the integrator is using an EDA tool, it should be functionally	Object
		verify the accuracy of the Element objects with respect to the PTI source	
7	Integrator	Using the output of steps #5.6, the Integrator compares the locally generated	SUCCESS or
/	integrator	Element objects to those from the IP Bundle. This compare can be done by	FAILURE ³
		visual inspection or by a tool. If the contents of objects are the same, then	THEORE
		report SUCCESS. This means the Element objects are consistent with those	
		in the IP Bundle. Otherwise, report FAILURE and stop the workflow.	
8	Integrator	Using the output of step #5, determine which APSO objects are in scope for	Threat Model
	C	the IC.	
9	Integrator	Using the output of step #5, create any additional APSO objects from the	Table 6, APSO
	_	Element objects that have security objectives at the IC level as it pertains to	Data Object
		the IP. Additional security weaknesses may be identified also.	
10	Integrator	If there are any APSO objects created in step #9, add them to the IC threat	Threat Model
		model	
11	Integrator	Using the output of step #10, verify the security objectives are met and the	Verification
		security weaknesses are properly addressed during integration of the IP into	
		the IC.	

³ If FAILURE, the Integrator can either choose an equivalent IP from a different supplier or have a discussion with the IP Provider to address the discrepancies.

1 Annex A : Data Object JSON Schema

2 This section contains JSON schemas for the data objects defined in this standard, validated against the 3 referenced JSON schema standard.

4 A.1 Asset Definition

```
    {
        "$schema": "http://json-schema.org/draft/2019-09/schema",
        "title": "Asset Definition",
        "description": "An asset is something that's critical for proper IP operation",
        "type": "object",
        "properties": {
            "Name" : { "type" : "string" },
            "Description" : { "type" : "string" },
            "Family" : { "type" : "array", "items" : { "type" : "string" },
            "Database_ID" : { "type" : "array", "items" : { "type" : "string" },
            "Database_ID" : { "type" : "array", "items" : { "type" : "string" },
            "Database_ID" : { "type" : "array", "items" : { "type" : "string" },
            "Database_ID" : { "type" : "array", "items" : { "type" : "string" } ,
            "Database_ID" : { "type" : "array", "items" : { "type" : "string" } ,
            "Database_ID" : { "type" : "array", "items" : { "type" : "string" } ,
            "Database_ID" : { "type" : "array", "items" : { "type" : "string" } ,
            "Database_ID" : { "type" : "array", "items" : { "type" : "string" } ,
            "Database_ID" : { "type" : "array", "items" : { "type" : "string" } ,
            "Database_ID" : ["Name", "Family", "Type"]
        }
}
```

19 A.2 Database

33 A.3 Element

```
34 {
35 "$schema": "http://json-schema.org/draft/2019-09/schema",
   "title": "Element",
37 "description": "An element is a relationship to the asset, directly or indirectly",
38 "type": "object",
39 "properties": {
40 "Asset Name" : { "type" : "string" },
41 "Direction" : { "type" : "string", "enum": ["Input", "Output", "None"] },
42 "Security Weakness Reference" : { "type" : "array", "items" : { "type" : "string" } },
43 "Ports" : { "type" : "array", "items" : { "type" : "string" } },
44 "Parameters" : { "type" : "array", "items" : { "type" : "string" } },
45 ",
47 }
```

49 A.4 Attack Points Security Objective

```
50 {
51 "$schema": "http://json-schema.org/draft/2019-09/schema",
52 "title": "Attack Points Security Objective",
53 "description": "Attack points with associated security objective",
54 "type": "object",
```

```
1234567890112345678
10112345678
10112345678
          "properties": {
              "Name" : { "type" : "string" },
"Asset Name" : { "type" : "string" },
              "Security Objective" : { "type" : "string",
                           "enum": [
                                "Confidentiality",
                                "Integrity",
                                "Availability"
                           ] },
              "Description" : { "type" : "string" },
              "Condition" : { "type" : "string" },
              "Security Weakness Reference" : {"type" : "array", "items" : {"type" : "string"} },
"Additional Security Weaknesses": {"type" : "array", "items" : {"type" : "string"} },
              "Attack Points" : {"type" : "array", "items" : {"type" : "string"} },
              "Parameters" : { "type" : "array", "items" : { "type" : "string" } }
              }.
        "required" : ["Name", "Asset Name", "Security Objective"]
        }
19
```

20 A.5 SA-EDI Data Object

1 The SA-EDI data object may be used to collect the standard's data objects into a single JSON file. This is 2 optional, however if provided in the IP Bundle this schema shall be used.

```
{
  "$schema": "http://json-schema.org/draft/2019-09/schema",
  "definitions" : {
    "ASSET" : {
                 "title": "Asset Definition",
                 "description": "An asset is something of importance",
                 "type": "object",
                 "properties": {
                     "Name" : { "type" : "string" },
                     "Description" : { "type" : "string" },
                    "Family": { "type": "array", "items": {"type": "string"} },
"Type": { "type": "array", "items": {"type": "string"} },
"Database_ID": { "type": "array", "items": {"type": "string"} }
                 },
                 "required" : ["Name", "Family", "Type"]
                },
     "DATABASE" : {
                 "title": "Database",
                 "description": "Information that defines a security weaknesses database",
                 "type": "object",
                 "properties": {
                    "ID" : { "type" : "string" },
                    "Description" : { "type" : "string" },
"URI" : { "type" : "string" },
                    "Version" : { "type": "string" }
                 },
                 "required" : ["ID", "URI", "Version"]
                 },
     "ELEMENT" : {
                 "title": "Element",
                 "description": "An element is a relationship to the asset",
                 "type": "object",
                 "properties": {
                    "Asset Name" : { "type" : "string" },
"Direction" : { "type" : "string", "enum": ["Input", "Output", "None"] },
                    "Security Weakness Reference" : { "type" : "array", "items" : {"type" :
                     "string"} },
                     "Ports" : { "type" : "array", "items" : {"type" : "string"} },
                     "Parameters" : { "type" : "array", "items" : {"type" : "string"} }
                 },
                 "required" : ["Asset Name", "Direction", "Ports"]
                 },
     "APSO" : {
```

```
"title": "Attack Points Security Objective",
                 "description": "Attack points with associated security objective",
                 "type": "object",
                 "properties": {
                    "Name" : { "type" : "string" },
                    "Asset Name" : { "type" : "string" },
                    "Security Objective" : { "type" : "string",
                                   "enum": [
                                            "Confidentiality",
                                            "Integrity",
                                            "Availability"
                                            ] },
                    "Description" : { "type" : "string" },
                    "Condition" : { "type" : "string" },
"Security Weakness Reference" : { "type" : "array", "items" : { "type" :
                    "string"} },
                    "Additional Security Weaknesses": {"type" : "array", "items" : {"type" :
                    "string"} },
                    "Attack Points" : {"type" : "array", "items" : {"type" : "string"} },
                    "Parameters" : { "type" : "array", "items" : { "type" : "string" } }
                 },
                 "required" : ["Name", "Asset Name", "Security Objective"]
                 }
  "title": "SA-EDI Group Object",
  "description": "Used to save all SA-EDI data objects in a single .json file",
  "type": "object",
  "properties": {
     "Asset Definition" : {"type" : "array", "items" : {"$ref" : "#/definitions/ASSET"} },
    "Database": {"type": "array", "items": {"$ref": "#/definitions/DATABASE"} },
"Element": {"type": "array", "items": {"$ref": "#/definitions/ELEMENT"} },
"Attack Points Security Objective":{"type": "array", "items": {"$ref": "#/definitions/ELEMENT"}
     },
  "required" : ["Asset Definition", "Attack Points Security Objective"]
}
```

1 Annex B : Use-case Example

The intention of this section is to demonstrate how the standard can be applied to an example IP. The IP was
 crafted to be simple and minimalistic for easy comprehension. The IP is not intended to be functionally
 complete or optimal. The source code can be referenced in section Annex C.

5 B.1 Watchdog IP

6 The Watchdog IP (WDIP) is a simple timer that when it expires, will assert an output signal that can be used

7 to put an IC into a known good state. The timer counts down from an initial value that is the concatenation

8 of the REG COUNT HIGH and REG COUNT LOW registers. The block diagram of the WDIP is shown

9 in Figure 6.

- d) i_data : This is an 8-bit bus [7:0]. It contains data to write to the targeted register on i_addr when i_wen is asserted.
- e) *o_data*: This is an 8-bit bus [7:0]. It contains the data read from the targeted register on *i_addr* when *i ren* is asserted.
- 26 27

10 11

12

13

14

15

16

17

18 19

20

21

22

23

24

- 1 2. Counter: This block is the actual timer of the watchdog and communicates to the WD Ctrl block 2 through the parallel "Com Bus". The source for this block is provided in section C.3. The "Com Bus" 3 is internal to the watchdog IP and is defined as follows. 4 5 6 7
 - a) count val: This is a 16-bit input [15:0] that is used as the initial value of the timer.
 - b) wd start: Used to start the timer.
 - c) wd service: Used to service the timer (i.e. reset the count).
 - d) wd pause: Used to pause the timer.
 - e) wd timer: This is a 16-bit output [15:0] that represents the current timer value.
- 10 f) wd timout: Counter has reached zero.
- 11 g) clk: Clock. It is connected to *i clk*.

17

8

9

- 13 The Counter block also supports the following input debug signals on the "debug sigs" interface 14 which are exposed to the top module. During debug mode, the debug signals override the WD Ctrl 15 block signals.
- 16 a) *i dbg enable*: Used to put the WDIP into debug mode.
 - b) *i dbg clk en*: Once asserted, the debug clock will be used instead of *i clk*.
- 18 c) *i dbg clk*: Debug clock.
- 19 d) *i dbg cnt val*: This is a 16-bit input [15:0] that is used as the initial value of the timer.
- 20 e) *i dbg timout*: Asserts the timeout.
- 21 f) *i dbg pause*: Used to pause the timer.
- 22 g) *i dbg start*: When asserted, the timer is running.
- 23 h) *i dbg service*: Services the timer to reset the count. 24
- 25 **B.1.1 Registers**
- 26 The WD Ctrl block supports the following register interface to the top module.

27 1. REG CONTROL (Address: 0x1)

Bit #	Access	Description	
0	RW	Lock bit. Once set, REG_CONTROL,	
		REG COUNT LOW, and REG COUNT HIGH	
		can not be altered until either <i>i</i> rst or <i>o</i> wd reset is	
		asserted.	
		• 0 – unlocked	
		• 1 – locked	
1	RW	Start. Once set, the timer will start counting down	
		from the initial value.	
		• 0 – disabled. The timer is cleared.	
		• 1 – starts the timer	
2	RW	Pause. Once set, the timer will pause. All state	
		information is preserved.	
		• 0 – continue timer	
		• 1 – pause timer	
3-7	-	Reserved	

1	2.	REG SERVICE (Address: 0x2)		
		Bit #	Access	Description
		0	W	Service bit. Once set, the timer will be reloaded
				from the initial values in REG_COUNT_LOW and
				REG_COUNT_HIGH registers.
				• $0 - \text{nothing}$
				 1 – serviced. This will be cleared on the next clock cycle.
		1-7	-	Reserved
r				
Ζ				
-				
3	3.	REG_	<u>COUN</u>	Γ_LOW (Address: 0x3)
		Bit #	Access	Description
		0-7	W	The lower byte of the initial value of the timer.
4				
•				
5	4	REG	COUN	THIGH (Address: 0x4)
0		Rit #	Access	Description
		0-7	W	The upper byte of the initial value of the timer.
(0,		
6				
7	5.	REG_	TIMER	_LOW (Address: 0x5)
		Bit #	Access	Description
		0-7	R	The lower byte of the timer value
8				
0				
0	6	DEC		
9	6.	REG_	TIMER	HIGH (Address: 0x6)
		Bit #	Access	Description
10		0-7	R	The upper byte of the timer value
10				

11 B.2 Workflow Steps

12 Using the WDIP as an example, the methodology outlined in Table 7 is as follows:

Step #1. Identify a database of known security weaknesses. In this example, the CWE database is
 used and the Database data object will be as such:

```
{
   "ID" : "CWE VIEW: Hardware Design",
   "Description" : "A community developed list of hardware weakness types",
   "URI" : "https://cwe.mitre.org/data/definitions/1194.html",
   "Version" : "4.3"
}
```

26

27

Step #2. Identify the asset(s). Inside the counter block (*wd_count.v*), the register *wd_timer* holds the timeout value of the watchdog. The watchdog functionality may be used to detect an undesirable condition in the IC. Therefore, an adversary would want to prevent this timeout from happening and may want to modify the value of the counter (e.g., increase or reset its value). This makes the *wd_timer* an asset to the IP. The Asset Definition data object is defined as such:

"Name" : " wd_top.count_block.wd_count.wd_timer", "Description" : "Timer count status. Critical for proper operation",

Copyright © 2021 Accellera. All rights reserved. This is an unapproved Accellera Standards Draft, subject to change. "Family" : ["Counter/Timer", "Test/Debug"], "Type" : ["Control", "Critical"], "Database_TD" : ["CWE VIEW: Hardware Design"]

To clarify, "Test/Debug" was included in the *Family* attribute because the IP supports a debug interface. This value will help associate security concerns around debug from the CWE database.

Once a timeout occurs, it is critical that the indication (i.e., system reset) gets propagated out to the top module without any modification. This timeout is in the counter block and is a register defined as *wd_assert_timeout*. An adversary who gains control of or influence over this register can modify the behavior of the watchdog IP (e.g., block the assertion of output signal *o_wd_reset* or assert constantly to create a denial of service). Therefore, *wd_assert_timeout* is critical for proper operation which makes it an asset. The Asset Definition data object for this asset is as follows:

```
"Name" : " wd_top.count_block.wd_count.wd_assert_timeout",
   "Description" : "Timeout assertion signal. Critical for proper operation",
   "Family" : ["Counter/Timer", "Test/Debug"],
   "Type" : ["Control", "Critical"],
   "Database_ID" : ["CWE VIEW: Hardware Design"]
}
```

Step #3. Generate the Element data objects. For the WDIP, there are four objects generated: two are associated with the *wd_timer* asset and two are associated with the *wd_assert_timeout* asset. The Element data objects are as follows.

```
"Asset Name" : "wd top.count_block.wd_count.wd_timer",
  "Direction" : "Input",
  "Security Weakness Reference" : ["CWE-1244", "CWE-1191", "CWE-1234"],
  "Ports" : [
        "wd top.i rst",
       "wd top.i clk",
       "wd_top.i_ren",
       "wd_top.i_wen",
       "wd_top.i_addr",
       "wd_top.i_dbg_enable",
"wd_top.i_dbg_clk_en",
       "wd_top.i_dbg_clk",
"wd_top.i_dbg_pause",
       "wd_top.i_dbg_start",
       "wd_top.i_dbg_service"
       "wd_top.i_dbg_timeout",
"wd_top.i_dbg_cnt_val" ],
  "Parameters" : ["wd_top.COUNT_SIZE"]
1
{
  "Asset Name" : "wd_top.count_block.wd_count.wd_timer",
  "Direction" : "Output",
  "Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],
  "Ports" : ["wd_top.o_data"],
  "Parameters" : ["wd_top.COUNT_SIZE"]
}
{
  "Asset Name" : "wd_top.count_block.wd_control.wd_assert_timeout",
  "Direction" : "Input",
  "Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],
  "Ports" : [
       "wd_top.i_rst",
       "wd_top.i_clk",
       "wd_top.i_ren",
"wd_top.i_wen",
       "wd_top.i_data",
"wd_top.i_addr",
       "wd_top.i_dbg_enable",
"wd_top.i_dbg_clk_en",
       "wd_top.i_dbg_clk",
"wd_top.i_dbg_pause",
       "wd_top.i_dbg_start",
```

14

15

16

17

18

19

38

344444444455555

55

56

57

58

590123456678

```
"wd_top.i_dbg_service",
    "wd_top.i_dbg_timeout",
    "wd_top.i_dbg_cnt_val"],
    "Parameters" : ["wd_top.COUNT_SIZE"]
}
{
    "Asset Name" : "wd_top.count_block.wd_control.wd_assert_timeout",
    "Direction" : "Output",
    "Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],
    "Ports" : ["wd_top.o_wd_reset "]
}
```

Step #4. Create the APSO data objects. For the *wd_timer* asset, the Integrity security objective needs to be upheld since this is what an adversary would want to alter. To protect the integrity of the timer value, the IP provides a locking mechanism. Only when the lock is not asserted, can the timer be manipulated, which is captured in the *Condition* attribute. The APSO data objects for *wd_timer* are as follows:

```
"Name" : "S0_1",
"Asset Name" : "wd_top.count_block.wd_count.wd_timer",
"Security Objective" : "Integrity",
"Description" : "If the lock bit is not enabled then the counter can be altered",
"Condition" : "(wd_top.i_wen=1) && (wd_top.i_addr=REG_CONTROL) && (wd_top.i_data[0]=0)",
"Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],
"Attack Points" : [
    "wd_top.i_wd_rst",
    "wd_top.i_enb",
    "wd_top.i_enb",
    "wd_top.i_enb",
    "wd_top.i_addr",
    "wd_top.i_data"],
"Parameters" : ["wd top.COUNT SIZE"]
```

APSO object "SO_2" requires the *Condition* of debug mode to be enabled to violate the security objective.

```
{
  "Name" : "S0_2",
  "Asset Name" : "wd_top.count_block.wd_count.wd_timer",
  "Security Objective" : "Integrity",
  "Description" : "wd_top.i_dbg_enable == 1",
  "Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],
  "Attack Points" : [
        "wd_top.i_dbg_enable",
        "wd_top.i_dbg_clk_en",
        "wd_top.i_dbg_lk",
        "wd_top.i_dbg_start",
        "wd_top.i_dbg_ent_val"],
        "Parameters" : ["wd_top.COUNT_SIZE"]
}
```

The *wd_assert_timeout* asset requires the Integrity security objective. If the integrity was compromised, a spurious timeout action will be taken, which may cause unwanted behavior such as extend the timeout or cause a DoS. This can be done when the IP is in debug mode. The APSO data objects for the *wd_assert_timeout* are as follows:

```
{
   "Name" : "SO_3",
   "Asset Name" : "wd_top.count_block.wd_count.wd_assert_timeout",
   "Security Objective" : "Integrity",
   "Description" : "Debug can assert a timeout at any time",
   "Condition" : "wd_top.i_dbg_enable == 1",
   "Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],
   "Attack Points" : [
        "wd_top.i_dbg_enable",
        "wd_top.i_dbg_timeout"],
   "
```

```
"Parameters" : ["wd_top.COUNT_SIZE"]
}
{
    "Name" : "SO_4",
    "Asset Name" : "wd_top.count_block.wd_count.wd_assert_timeout",
    "Security Objective" : "Integrity",
    "Description" : "Debug can assert a timeout by setting count value to 0",
    "Condition" : "wd_top.i_dbg_enable == 1",
    "Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],
    "Attack Points" : [
        "wd_top.i_dbg_enable",
        "Wd_top.i_dbg_enable",
```

In this example, the *Output* Element object that is associated with the "wd_timer" was not used in the creation of the APSO objects. This is because there were no identified security objectives on the asset that are associated with the *Ports* in this object. This does not violate compliance to the standard.

Step #5. Create the IP Bundle. This will include the source code in Annex C, netlist and testbenches, and the SA-EDI data objects produced in Steps #1-4. The SA-EDI data objects may be organized into a JSON object as shown below by using the schema defined in section A.5. The IP Bundle is then delivered to the Integrator.

```
{
  "Asset Definition" : [
       {
          "Name" : " wd top.count block.wd count.wd timer",
          "Description": "Timer count status. Critical for proper operation",
          "Family": ["Counter/Timer", "Test/Debug"],
"Type": ["Control", "Critical"],
          "Database ID" : ["CWE VIEW: Hardware Design"]
       },
       {
          "Name" : " wd_top.count_block.wd_count.wd_assert_timeout",
"Description" : "Timeout assertion signal. Critical for proper operation",
          "Family" : ["Counter/Timer", "Test/Debug"],
"Type" : ["Control", "Critical"],
          "Database ID" : ["CWE VIEW: Hardware Design"]
       }],
  "Database" : [
        {
          "ID" : "CWE VIEW: Hardware Design",
          "Description" : "A community developed list of hardware weakness types",
          "URI" : "https://cwe.mitre.org/data/definitions/1194.html",
"Version" : "4.3"
       }],
  "Element" : [
       {
          "Asset Name" : "wd_top.count_block.wd_count.wd_timer",
"Direction" : "Input",
          "Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],
          "Ports" : [
                     "wd top.i_rst",
                     "wd_top.i_clk"
                     "wd_top.i_ren",
                     "wd_top.i_wen"
                     "wd_top.i_addr",
                     "wd_top.i_dbg_enable",
                     "wd_top.i_dbg_clk_en",
                     "wd_top.i_dbg_clk",
                     "wd_top.i_dbg_pause"
                     "wd_top.i_dbg_start",
"wd_top.i_dbg_service",
          "wd_top.i_dbg_timeout",
    "wd_top.i_dbg_cnt_val" ],
"Parameters" : ["wd_top.COUNT_SIZE"]
        },
           "Asset Name" : "wd_top.count_block.wd_count.wd_timer",
          "Direction" : "Output",
```

Copyright © 2021 Accellera. All rights reserved. This is an unapproved Accellera Standards Draft, subject to change.

```
"Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],
        "Ports" : ["wd_top.o_data"],
"Parameters" : ["wd_top.COUNT_SIZE"]
       "Asset Name" : "wd_top.count_block.wd_control.wd_assert_timeout",
"Direction" : "Input",
        "Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],
       "Ports" : [
               "wd_top.i_rst",
               "wd_top.i_clk",
               "wd_top.i_ren",
               "wd_top.i_wen",
                "wd_top.i_data",
                "wd_top.i_addr",
               "wd_top.i_dbg_enable",
"wd_top.i_dbg_clk_en",
               "wd_top.i_dbg_clk",
"wd_top.i_dbg_pause",
                "wd_top.i_dbg_start",
                "wd_top.i_dbg_service"
               "wd_top.i_dbg_timeout",
"wd_top.i_dbg_cnt_val"],
        "Parameters" : ["wd_top.COUNT_SIZE"]
     },
        "Asset Name" : "wd_top.count_block.wd_control.wd_assert_timeout",
        "Direction" : "Output",
        "Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],
        "Ports" : ["wd_top.o_wd_reset "]
     }l,
"Attack Points Security Objective": [
     {
       "Name" : "SO_1",
"Asset Name" : "wd_top.count_block.wd_count.wd_timer",
        "Security Objective" : "Integrity",
       "Description": "If the lock bit is not enabled then the counter can be altered",
"Condition":"(wd_top.i_wen=1)&&(wd_top.i_addr=REG_CONTROL)&&(wd_top.i_data[0]=0)",
        "Security Weakness Reference" : ["CWE-1244", "CWE-1191", "CWE-1234"],
       "Attack Points" : [
                  "wd_top.i_wd_rst",
                  "wd top.i wd clk",
                  "wd_top.i_enb",
                  "wd top.i wen"
                  "wd_top.i_addr",
"wd_top.i_data"],
        "Parameters" : ["wd top.COUNT SIZE"]
     },
     {
       "Name" : "S0_2",
"Asset Name" : "wd_top.count_block.wd_count.wd_timer",
        "Security Objective" : "Integrity",
       "Description" : "Debug signals can alter the counter",
"Condition" : "wd_top.i_dbg_enable == 1",
        "Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],
        "Attack Points" : [
                  "wd_top.i_dbg_enable",
                  "wd top.i dbg clk en",
                  "wd_top.i_dbg_clk",
                  "wd top.i dbg pause",
                  "wd_top.i_dbg_start",
"wd_top.i_dbg_cnt_val"],
        "Parameters" : ["wd top.COUNT SIZE"]
     },
     {
       "Name" : "SO_3",
"Asset Name" : "wd_top.count_block.wd_count.wd_assert_timeout",
        "Security Objective" : "Integrity",
       "Description" : "Debug can assert a timeout at any time",
"Condition" : "wd_top.i_dbg_enable == 1",
       "Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],
       "Attack Points" : [
               "wd_top.i_dbg_enable",
    "wd_top.i_dbg_timeout"],
        "Parameters" : ["wd top.COUNT SIZE"]
     },
     {
       "Name" : "SO_4",
"Asset Name" : "wd_top.count_block.wd_count.wd_assert_timeout",
        "Security Objective" : "Integrity",
```

Copyright © 2021 Accellera. All rights reserved. This is an unapproved Accellera Standards Draft, subject to change.

"Description" : "Debug can assert a timeout by setting count value to 0", "Condition" : "wd_top.i_dbg_enable == 1", 123456789 "Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"], "Attack Points" : ["wd_top.i_dbg_enable",
"wd_top.i_dbg_cnt_val"], "Parameters" : ["wd top.COUNT SIZE"] }] 10 } 11 12 Step #6. Regenerate the Element objects. The Integrator extracts the Asset Definition objects from 13 the IP Bundle. Using these objects, the Integrator repeats Step #3 to regenerate the Element objects. 14 Step #7. Verify the Element objects. The Integrator performs a file compare between the locally 15 generated Element objects and the Element objects from the IP Bundle. If the objects do not match, 16 the process stops with a report of FAILURE. In the case where they match, the Integrator has 17 verified that the SA-EDI collateral in the IP Bundle corresponds with the provided RTL, yielding 18 SUCCESS. 19 Step #8. Scope the Threat Model. The Integrator reviews the APSO objects that were included in 20 the IP Bundle to see which ones are in scope for the IC. For example, the APSO object labeled 21 "SO 2" may not be a concern if the debug ports are tied off to be disabled in the IC. However, if 22 the debug ports are to be connected, then this object would be in scope. 23 Step #9. Create the Threat Model. There may be some specific security objectives relevant to 24 integration of the WDIP block in the IC. As an example, the o wd reset signal should not be gated, 25 and therefore requires the security objective Availability. The Integrator could add the following 26 APSO object to the Threat Model. Notice that some of the optional attributes are not included in 27 the object because their values are not needed. 2200-274

```
"Name" : "S0_5",
"Asset Name" : "wd_top.count_block.wd_control.wd_assert_timeout",
  "Security Objective" : "Availability",
  "Description" : "The timeout assertion should never be gated",
  "Attack Points" : ["wd_top.o_wd_reset"]
}
```

36 Step #10. Complete the Threat Model. Add the five created APSO objects to the threat model for 37 the IC. Since this is just an example, the IC threat model is not shown for simplicity reasons.

38 Step #11. Verify the Threat Model. The last step is to verify that the security objectives in the threat 39 model are upheld in the architecture and design of the IC. For example, verify "SO_1" is true by 40 trying to prevent a timeout assertion via the WD Ctrl block interface once the lock bit is set. Another 41 example may be to verify that deprivileged agents in the IC do not have access to the debug signals 42 for "SO 2". Other examples may exist, however, the verification process is out of scope of the 43 standard.

44 **B.2.1 WDIP Security Evaluation**

35

45 The WDIP block functions as expected, meaning there are no identified security vulnerabilities in the module. 46 However, the SA-EDI methodology did identify security concerns that could be potential issues in an IC. 47 The IP implemented a protection mechanism that can be circumvented by the debug interface. The lock bit 48 in the REG CONTROL register prevents modifications to the counter once set. However, the protection 49 logic does not extend to the debug interface. Therefore, if not addressed in the IC, this concern could lead to 50 multiple vulnerabilities in the IC.

1 Annex C : WDIP Source Code

This section includes the source code for the watchdog IP architecture detailed in B.1. The source files are
 written in Verilog and are as follows:

- wd top.v top module
- wd_control.v logic which manages the registers and the counter block. It also controls the
 assertion of the watchdog timeout signal.
- wd_count.v logic which manages the timer itself and its debug signals

9 **C.1 wd_top.v**

4

5

6

7

8

0-2m45078800-2m450078800-2m450078800-2m45078800-2m450078800-2m450078800-2m450078800-2m450078800-2m450078800-2m450078800-2m450078800-2m450078800-2m450078800-2m450078800-2m450078800-2m450078800-2m450078800-2m45007880

```
module wd_top #(parameter COUNT_SIZE = 16)
                                                    // top module
                        o_wd_reset, //wd timeout, active high
  output
                       i_rst, //reset, active low
i_clk, //sys clk
  input
  input
                                   //write enable
  input
                       i wen,
                                 //read enable
//input data to register
//output data from register
//register address
                      i_ren,
i_data,
  input
  input [7:0]
  output [7:0]
                        o_data,
  input [7:0]
                       i_addr,
                      i_dbg_enable, //debug enable
  input
                     i_dbg_clk_en, //debug_clk_enable
i_dbg_clk, //debug_clk_overrid
  input
                                       //debug clk override
  input
                       i_dbg_timeout, //debug timeout assertion
  input
                       i_dbg_pause, //debug temporarily stops timer
i_dbg_start, //debug starts/stops timer
  input
  input
                        i_dbg_service, //debug services timer
  input
  input[COUNT_SIZE-1:0] i_dbg_cnt_val //debug sets timer count
  );
                          wd timeout; //wd timout
  wire
  wire [COUNT_SIZE-1:0] timer_status; //status of timer count
  wire [COUNT_SIZE-1:0] count_val; //timer count value
  wire
                          wd_start;
                                         //starts timer
                                        //services timer
  wire
                          wd service;
                                        //pauses timer
  wire
                          wd_pause;
    wd_control #(.COUNT_SIZE(COUNT SIZE))
    control_block(
                              //in
    .clk (i_clk),
    .i_wd_rst (i_rst),
                             //in
   .reg_address (i_addr), //address
   .reg_data_i (i_data), //write data
.reg_data_o (o_data), //read data
   .reg_wr_enb (i_wen), //write enable
.reg_rd_enb (i_ren), //read enable
    .reg_rd_enb (i_ren),
   .wd_timeout (wd_timeout), //in
   .timer_status(timer_status),//in
                               //out
    .count_val (count_val),
    .wd_start (wd_start),
                                   //out
    .wd service (wd service), //out
    .wd_pause (wd_pause),
                                   //out
    .o_wd_reset (o_wd_reset)
                                 //out
  ):
  wd count #(.COUNT SIZE(COUNT SIZE))
   count_block(
                                //in
   .clk (i clk),
    .rst_n (i_rst),
                               //in
    .wd_timer (timer_status),
                                  //out
   .wd_timeout (wd_timeout), //out
    .count val (count val),
                                  //in
    .wd_start (wd_start),
                                   //in
    .wd service (wd service),
                                   //in
    .wd_pause (wd_pause),
                                   //in
```

```
.i_dbg_enable (i_dbg_enable), //in
.i_dbg_clk_en (i_dbg_clk_en), //in
.i_dbg_clk (i_dbg_clk), //in
.i_dbg_timeout (i_dbg_timeout), //in
.i_dbg_pause (i_dbg_pause), //in
.i_dbg_start (i_dbg_start), //in
.i_dbg_service (i_dbg_service), //in
.i_dbg_cnt_val (i_dbg_cnt_val) //in
);
endmodule
```

123345678801-23

14 C.2 wd_control.v

```
module wd_control #(parameter COUNT_SIZE = 16)
                    clk,
                                     //clock
  input
  input
                    i_wd_rst,
                                    //reset
           [7:0] reg_address, //address
[7:0] reg_data_i, //data
[7:0] reg_data_o,
  input
  input
  output
  input
                    reg_rd_enb, //read enable
  input
                    reg_wr_enb, //write enab10065
            [COUNT_SIZE-1:0] timer_status, //timer cnt status
  input
  output reg [COUNT SIZE-1:0] count val, //timer cnt value
  input
                   wd_timeout, //timeout assertion
  output
                     wd_start,
                                     //starts/stops timer
  output
                     wd_service,
                                    //services timer (reset)
                                     //temporarily pauses timer
  output
                     wd_pause,
                                    //timeout assertion reset
  output
                    o_wd_reset
  );
  parameter REG_CONTROL = 'd1;
parameter REG_SERVICE = 'd2;
parameter REG_COUNT_LOW = 'd3;
  parameter REG_COUNT_HIGH = 'd4;
  parameter REG_TIMER_LOW = 'd5;
  parameter REG_TIMER_HIGH = 'd6;
  reg [7:0] reg data;
  reg [7:0] reg_control;
  reg [7:0] reg_service;
  reg
            reg_pause;
          reg_read;
reg_write;
  wire
  wire
  wire
           lock_flag;
                            //lock bit
          start_flag;
pause_flag;
                            //start bit
//pause
  wire
  wire
             pause_flag;
             service_flag; //service bit
  wire
  assign o_wd_reset = wd_timeout; //timeout assertion
  assign lock_flag = reg_control[0];
  assign start_flag = reg_control[1];
  assign pause_flag = reg_control[2];
  assign wd_start = start_flag; //start to cnt blk
assign wd_pause = reg_pause; //pause to cnt blk
  assign service_flag = reg_service[0];
  assign wd_service = service_flag; //service to cnt blk
assign reg_data_o = reg_data;
  assign reg_write = reg_wr_enb && ~reg_rd_enb;
  assign reg_read = reg_rd_enb;
  reg [7:0] reg_count_low;
  reg [7:0] reg_count_high;
                                    //flag when count[7:0] is set
//flag when count[15:8] is set
          reg_count_low_set;
  reg
  reg
             reg_count_high_set;
             reg_timer_done;
                                     //flag when timer status is ready
  reg
  //
```

always @(posedge clk) if (~i_wd_rst) begin reg_data <= 8'b0; reg_control <= 8'b0;</pre> reg_service <= 8'b0;</pre> reg_count_low <= 8'b0;</pre> reg_count_high <= 8'b0;</pre> reg_timer_done <= 1'b0;</pre> reg_count_low_set <= 1'b0;</pre> reg_count_high_set <= 1'b0;</pre> reg_pause <= 1'b0;</pre> end else begin if (reg_write || reg_read) begin reg_data <= 8'd0;</pre> case (reg_address) REG_CONTROL: //RW _____if (reg_read) reg_data <= reg_control;</pre> else if (reg_write && !lock_flag) reg_control <= reg_data_i;</pre> REG SERVICE: //WO if (reg_write) reg_service = reg_data_i; REG COUNT LOW: //WO if (reg_write && !lock_flag) begin reg_count_low <= reg_data_i;</pre> reg_count_low_set <= 1'b1;</pre> end REG COUNT HIGH: //WO ______if (reg_write && !lock_flag) begin reg_count_high <= reg_data_i;</pre> reg_count_high_set <= 1'b1;</pre> end REG_TIMER_LOW: //RO if (reg read) begin reg_pause <= 1'b1;</pre> //pause for 8bit reads reg_data <= timer_status[7:0];</pre> if (!reg_timer_done) reg_timer_done <= 1'b1;</pre> else begin reg_pause <= 1'b0; //all 16bits availabe, continue</pre> reg timer done <= 1'b0;</pre> end end REG TIMER HIGH: //RO if (reg_read) begin reg_pause <= 1'b1;</pre> //pause for 8bit reads reg data <= timer status[15:8];</pre> if (!reg_timer_done) reg timer done <= 1'b1; else begin reg pause <= 1'b0; //all 16bits avail, continue reg_timer_done <= 1'b0;</pre> end end default: ; //do nothing endcase end if (reg count low set && reg count high set) begin reg_count_low_set <= 1'b0; //clear the flags</pre> reg count high set <= 1'b0; end if (service flag) begin reg_service[0] <= 8'b0;</pre> end if (wd timeout) begin reg_control <= 8'b0; //timeout so clear cntrl settings</pre>

Copyright © 2021 Accellera. All rights reserved. This is an unapproved Accellera Standards Draft, subject to change.

```
end
    end
    //send timer cnt to counter block
    always @(posedge clk)
      if (~i_wd_rst)
      begin
            count val <= {COUNT SIZE{1'b1}};</pre>
      end
      else
      begin
        if (reg_count_low_set && reg_count_high_set)
            begin
                count_val[7:0] <= reg_count_low;</pre>
                 count_val[15:8] <= reg_count_high;</pre>
            end
      end
endmodule
```

20 C.3 wd_count.v

1234567890123456789

```
module wd_count #(parameter COUNT_SIZE = 16)
```

```
//clock
input
                             clk,
input
                             rst_n,
                                             //reset
output reg [COUNT_SIZE-1:0] wd_timer,
                                             //timer count status
output
                             wd timeout,
                                             //timeout assertion
           [COUNT_SIZE-1:0] count_val,
input
                                             //timer start count
input
                             wd start,
                                             //starts/stops timer
input
                             wd service,
                                             //services timer
input
                              wd_pause,
                                             //temporarily pauses timer
                              i_dbg_enable, //enables debug mode
input
input
                              i_dbg_clk_en, //enables debug clk override
input
                              i_dbg_clk,
                                             //debug clk
input
                              i_dbg_timeout, //asserts timeout
input
                              i_dbg_pause, //temporarily pauses timer
input
                              i_dbg_start,
                                             //starts/stops timer
           i_dbg_service, //services the timer
[COUNT_SIZE-1:0] i_dbg_cnt_val //timer start value
input
input
);
req
                       wd_assert_timeout;
//debug interface insertion
                       wd clk w
                                     = (i_dbg_enable && i_dbg_clk_en) ? i_dbg_clk : clk;
wire
                       wd_start_w = (i_dbg_enable) ? i_dbg_start : wd_start;
wire
                       wd_service_w = (i_dbg_enable) ? i_dbg_service : wd_service;
wd_pause_w = (i_dbg_enable) ? i_dbg_pause : wd_pause;
wire
wire
wire [COUNT_SIZE-1:0] count_val_w = (i_dbg_enable) ? i_dbg_cnt_val : count_val;
assign wd_timeout = (i_dbg_enable) ? i_dbg_timeout : wd_assert_timeout;
//timer/counter
always @(posedge wd_clk_w)
 if (~rst_n)
  begin
      wd timer <= 16'hFFFF;
  end
  else
  begin
      //watchdog setup
      case ({wd_start_w, wd_service_w, wd_pause_w})
          3'b100:
               if (wd timer > 0)
                  wd_timer <= wd_timer - 1'b1; //timer count
          3'b110:
              wd_timer <= count_val_w;</pre>
                                                   //reload timer (service)
          default:
              wd_timer <= wd_timer;</pre>
                                                   //pause
      endcase
  end
//timeout detection
always @(posedge wd clk w)
  if (~rst_n)
  begin
      wd_assert_timeout <= 1'b0;</pre>
  end
```

12004000-20042004516

```
else
begin
    if (!wd_start_w) begin
        //watchdog is disabled, initialize
        wd_assert_timeout <= 1'b0;
        end else if (wd_timer==0) begin
        //assert timeout, if not reload timer (service)
        wd_assert_timeout <= ~wd_service_w;
        end
    end
end
endmodule // wd_count
```

1 Bibliography

Bibliographical references are resources that provide additional or helpful material but do not need to be
 understood or used to implement this standard. Reference to these resources is made for informational use
 only.

- 5 [B1] Sherman, B., et al. IP Security Assurance Standard Whitepaper, Accellera, 2019. 6 https://www.accellera.org/images/activities/working-groups/ipsa-wg/Whitepaper_IPSA_Sept_4_2019.pdf
- 7 [B2] Common Weakness Enumeration, <u>https://cwe.mitre.org</u>
- [B3] FIPS 199: Standards for Security Categorization of Federal Information and Information Systems, NIST, 2004, https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.199.pdf
- 10 [B4] JSON Schema. The home of JSON Schema, <u>https://json-schema.org/</u>