VHDL-200x DAC 2003

VHDL-200x Steering Committee Members

Stephen Bailey, VASG Chair
John Willis, ISAC and Fast-Track
Jim Lewis, Modelling & Productivity
J. Bhasker, Testbench & Verification

John Ries, Performance
Rob Anderson, Assertions
Paul Menchini, Data Types & Abstraction
Joshua Johnson, Asynchronous Design

10/7/2003
Agenda

• IEEE information
• What is VHDL 200x?
• What is the Schedule?
• How does VHPI fit in?
• What is the organization?
• Enhancements (by functional team)
• Contact information
Instructions for the WG Chair

(Not necessary to be shown)

• At Each Meeting, the Working Group Chair shall:
 • Show slides #1 and #2 of this presentation
 • Advise the WG membership that:
 – The IEEE’s Patent Policy is consistent with the ANSI patent policy and is described in Clause 6 of the IEEE SA Standards Board Bylaws;
 – Early disclosure of patents which may be essential for the use of standards under development is encouraged;
 – Disclosures made of such patents may not be exhaustive of all patents that may be essential for the use of standards under development, and that neither the IEEE, the WG nor the WG Chairman ensure the accuracy or completeness of any disclosure or whether any disclosure is of a patent that in fact may be essential for the use of standards under development.
 • Instruct the WG Secretary to record in the minutes of the relevant WG meeting:
 – that the foregoing advice was provided and the two slides were shown;
 – that an opportunity was provided for WG members to identify or disclose patents that the WG member believes may be essential for the use of that standard;
 – any responses that were given, specifically the patents and patent applications that were identified (if any) and by whom.

10/7/2003 Approved by IEEE-SA Standards Board – December 2002
6. Patents

IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard. This assurance shall be provided without coercion and prior to approval of the standard (or reaffirmation when a patent becomes known after initial approval of the standard). This assurance shall be a letter that is in the form of either

a) A general disclaimer to the effect that the patentee will not enforce any of its present or future patent(s) whose use would be required to implement the proposed IEEE standard against any person or entity using the patent(s) to comply with the standard or

b) A statement that a license will be made available without compensation or under reasonable rates, with reasonable terms and conditions that are demonstrably free of any unfair discrimination

This assurance shall apply, at a minimum, from the date of the standard's approval to the date of the standard's withdrawal and is irrevocable during that period.

Approved by IEEE-SA Standards Board – December 2002
Inappropriate Topics for IEEE WG Meetings

• Don’t discuss licensing terms or conditions

• Don’t discuss product pricing, territorial restrictions or market share

• Don’t discuss ongoing litigation or threatened litigation

• Don’t be silent if inappropriate topics are discussed… do formally object.

If you have questions, contact the IEEE Patent Committee Administrator at patcom@ieee.org

Approved by IEEE-SA Standards Board – December 2002

10/7/2003
What is VHDL-200x?

• The next language revision (or two)
• Significant enhancements are planned
 – Not another “bug-fix release”
• Focus is on:
 – Performance & productivity
 – Testbench & verification
 • Assertion-based verification (ABV)
 – Modeling
Schedule

- Fast-Track
 - DAC '03: Final list
 - Dec '03: 1st Ballot
- VHPI
 - DAC '04: LRM Edit
 - Dec '04: 1st Ballot
- VHDL-200x (1)
 - DAC '04: LRM Edit
 - Dec '04: 1st Ballot
- VHDL-200x (2)*
 - DAC 05: LRM Edit

*If needed

10/7/2003
Where are We Today

- Organized into teams
- Prioritized enhancement requests
- Some teams have published proposed language changes
- Others have started some analysis of requirements
- Others have not yet made significant progress
 - Post DAC it is important that they do begin making progress
How Does VHPI Fit In?

- VHPI LRM editing is funded
 - Thanks Accellera!
- FT and VHPI both ready to ballot in Dec?
 - Ballot 2 PARs individually
 - Ballot 2 PARs together
 - Fold into 1 PAR and ballot together
 - Recommendation: Fold into 1 PAR
 - Ensure FT & VHPI changes integrated
 VHDL 200x Organization

- Fast-track
- Modeling & Productivity
- Performance
- Assertions
- Testbench & Verification
- Data Types & Abstraction
- Environment
- Asynchronous Modeling
Enhancements by Functional Team
Top Priorities

- Direct C & Verilog calls / std I/F
- Text IO
- to_string type capabilities
- Reading of out mode ports
- Performance
- Assertions
 - Apply Accellera assertions (PSL)
- Some modeling enhancements
- Environment (simulation control routines)
- Generate enhancements
- Testbench / verification
- Object-oriented enhancements
VHDL 200x Fast Track

John Willis and Jim Lewis
vhdl-200x-ft@vhdl.org
http://www.vhdl.org/vhdl-200x/vhdl-200x-ft
VHDL-200x-FT Charter

• Make critical updates to the language to support other standards groups (such as IEEE P1164, IEEE P1076.3, and Assertions).

• Select additional enhancements that:
 – Have low LRM impact
 – Non-controversial
 – Relatively high benefit
VHDL-200x-FT Requests

<table>
<thead>
<tr>
<th>Index</th>
<th>Issue</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT1</td>
<td>Allow explicit operators (ie: ">") to overload implicit operators</td>
<td>Analyzed by ISAC</td>
</tr>
<tr>
<td>FT2</td>
<td>Unary Reduction Operators (and, or, xor, ...). Also see 1164 & numeric_std.</td>
<td>Analyzed by 1164</td>
</tr>
<tr>
<td>FT3</td>
<td>Array/scalar logic operations</td>
<td>Analyzed by 1164</td>
</tr>
<tr>
<td>FT4</td>
<td>Min/max operations for types with defined "<" and ">" operations</td>
<td>Proposed</td>
</tr>
<tr>
<td>FT5</td>
<td>`to_string, to_hstring, to_ostring</td>
<td>Proposed</td>
</tr>
<tr>
<td>FT6</td>
<td>`image (for all types)</td>
<td>Proposed</td>
</tr>
</tbody>
</table>
VHDL-200x-FT Requests

<table>
<thead>
<tr>
<th>Index</th>
<th>Issue</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT7*</td>
<td>Standard Signal Spy / XMR capability (package/procedural based)</td>
<td>Proposed</td>
</tr>
<tr>
<td>FT8</td>
<td>hwrite, owrite, dwrite, bwrite, hread, oread, dread, bread</td>
<td>Analyzed by 1164</td>
</tr>
</tbody>
</table>

* Status of FT7
 Have donation from MTI.
 Expecting donation from Cadence.
 Are in early stages of discussion with Synopsys.
VHDL-200x-FT Status

• Leverage off of work being done by the 1164 and 1076.3 working groups.
• We are actively looking for champions for proposals
VHDL 200x
Modeling and Productivity

Jim Lewis
vhdl-200x-mp@vhdl.org
http://www.vhdl.org/vhdl-200x/vhdl-200x-mp
VHDL-200x-MP Charter

• Improve designer productivity through enhancing conciseness, simplifying common occurrences of code, and improving capture of intent.

• Enhance VHDL to allow (easy) modeling of functionality which is currently difficult or impossible.
VHDL-200x-MP Requests

General Proposals

• Bidirectional Connections (Switch, Jumper, Resistor)
• Regularized and minimized bracketing (end)
• Allow concurrent assignments (conditional and selected) in sequential code
• Create a one dimensional array aggregate. Permit it to be used on LHS of assignment
• *Permit expressions to be mapped to signal ports of entities and subprograms.
• More locally static expressions. Things like concatenation, indexing, and slicing of static objects/values
• Allow attribute declarations in code regions (not just decl)

* Candidate for Fast Track (Simplifies use of OVL)
VHDL-200x-MP Requests

Entity
• Allow ";" to terminate as well as separate an interface list
• Eliminate passive statement restriction on entities

Package
• Allow subprogram bodies in package declaration region
VHDL-200x-MP Requests

Types, Operators, and Overloading

• Give bit_vector an unsigned interpretation.
• Create rising_edge and falling_edge for type bit.
• Integrate 1164, 1076.2, 1076.3 into 1076
• Create comparison operators that return std_ulogic.
 ?EQ, NE, GT, LT, GE, LE?
• Boolean equivalence (of sl and boolean). if sl then
• Ability to apply register kind semantics to std_logic.
 Retain last resolved value when all drivers are off.
• * Max function (also listed in fast track)
• Remove white space requirement in physical literals.
• Short alias name for std_logic_vector.
• Value folding of std_ulogic (2 state/4 state).
VHDL-200x-MP Requests

Generate
• Add else/elsif clause in if-generate
• Case generate.

Components and Instantiations
• Implicit generic/port map in component instance

Process
• Permit keyword "all" or alternately symbol "*" in sensitivity list to imply all signals read in the process are in the sensitivity list

Loop
• Longest static prefix issue with loops
Case Statements

- Case Statement expressions (index & choices)
- Don't cares in case statement targets and comparison operators
- Non-locally static expressions in case expressions.

If Statements

- Add Endif (like elsif). See also general stuff about regularizing syntax and end
- Orif, orels, etc for mutual exclusive branches in FSM
VHDL-200x-MP Status

- We are actively looking for proposals
- We are actively looking for champions for proposals
VHDL-200x Performance

Chairman: John Ries
 johnr@model.com
 E-mail: vhdl-200x-perf@eda.org
 http://www.eda.org/vhdl-200x/vhdl-200x-pref
Scope and Responsibilities

• Language changes that increase the speed of tools.
• Mostly focused on simulator performance.
Performance Proposals

• Zero-delay ordering of signals
• Removal of simulation deltas
• Define 2 & 4 state semantics
• Atomic composite signals
• Expressions in sensitivity lists
Performance Proposals(2)

- Sensitivity to all signals read
- Light-weight signals
- Architecture level signal signal drivers
- Removal of deprecated constructs
VHDL-200x Assertions

Chairman: Rob Anderson
rob@reawebtech.com
E-mail: vhdl-200x-asr@eda.org
http://www.eda.org/vhdl-200x/vhdl-200x-asr
Scope and Responsibilities

• Enhance VHDL to provide support for Assertion-Based Verification
 – Primarily this means adding support for temporal expressions/sequences with assertions
 – Secondarily also includes API for coverage data
 – Want to leverage work of PSL and SystemVerilog assertions
Current Status

• Currently analyzing and comparing the capabilities of PSL and SystemVerilog Assertions

• Next step: determine if anything is missing
 – Especially from a VHDL perspective

• Expect PSL or SVA adoption as initial draft
 – How much deviation or enhancement TBD
Assertions Schedule

• Finish PSL / SVA comparison in June
• Publish comparison
• Determine & publish any additions desired for VHDL by mid July
• Determine VHDL starting point by Sep
• Finish technical proposal by Mar ‘04
VHDL-200x Testbench & Verification

Chairman: J. Bhasker
jbhasker@esilicon.com
E-mail: vhdl-200x-tbv@eda.org
http://www.eda.org/vhdl-200x/vhdl-200x-tbv
1076-200x: TBV Group

- Testbench and verification group
- List of issues under consideration posted on our home page – For eg. sparse arrays, constrained random number generation, lists, events.
- A couple of proposals on the table
- WG is active - started teleconferences
- Associative arrays and fork-join features discussed
- http://www.eda.org/vhdl-200x/vhdl-200x-tbv
- Questions? Jbhasker@esilicon.com
Associative arrays

-- Type declarations:

 type myaaT is associative (INTEGER) of BIT;
 type COLOR is {Red, Blue, Green, Yellow, Orange};
 type my2aaT is associative (COLOR, COLOR) of INTEGER;

-- Two associative arrays:

 variable mem_aa: myaaT;
 signal matrix: my2aaT;

-- Implicit subprograms:

 Delete, exists, size, first, last, next, prev
Fork & Join

<fj_label>: fork -- Sequential statement
<seq_blk1>: declare -- Sequential block; allowed outside
-- of a fork-join context as well.

<local_declarations>
begin
<sequential_statements>
end declare <seq_blk1>;

<seq_blk2>: declare
<local_declarations>
begin
<sequential_statements>
end declare <seq_blk2>;
join all <fj_label>; -- none / first / condition_clause/
-- timeout_clause
VHDL 200x Data Types and Abstraction

Paul Menchini
vhdl-200x-dta@vhdl.org
http://www.vhdl.org/vhdl-200x/vhdl-200x-dta
VHDL-200x-dta Charter

• Enhance VHDL data types abstractions.
• Serve as a resource to other groups contemplating changes to the existing VHDL data types and abstraction mechanisms.
VHDL-200x-dta Responsibilities

• Collect suggestions for change
• Analyze suggestions for change
• Analyze proposals and language designs from other subgroups
• Develop language designs for changes and proposals
• Recommend changes to language in dta
VHDL-200x-dta Requests

- Object Oriented Features
- Variant Records (“free unions”)
- New standard data types
 - Boolean, integer, real vectors
- Associative arrays
- Sparse arrays
- Enhanced object initialization
- Built-in lists
VHDL-200x-dta Status

• We wish to leverage off of previous work (e.g., in OO and variant records)
• We are actively looking for proposals
• We are actively looking for champions for proposals
VHDL 200x Environment

Dennis Soderberg
vhdl-200x-env@vhdl.org
http://www.vhdl.org/vhdl-200x/vhdl-200x-env
VHDL-200x-Env Charter

• Standardize handling of non-VHDL constructs.

• Enhance platform interoperability
VHDL-200x-Env Requests

General Proposals

• Add simulation control environment
• Simulation control subprograms
• Environment
• External Interface
VHDL-200x-Env Status

• We are looking for more proposals
Additional VHDL Enhancement Standardization Projects
VHPI standard Status
John Shields, Françoise Martinolle
VHPI Technical status

- Technical specification is done
 - It covers: post-analysis, elaboration and runtime VHPI access
- Final draft is available on web site http://www.vhdl.org/vhdlpli
- Editorial work
 - Initial funding (20%) provided by Accellera
 - Paul Menchini has begun incorporating VHPI in the VHDL 1076 LRM
 - First funded phase supposed to end June 15 (on track)
 - Integrate VHPI significant control points into elaboration and simulation.
 - Define common terminology
 - Organize and outline the additional chapter(s) and appendices of the VHDL LRM
VHDL 1076 deliverables

- VHPI integrated in the VHDL LRM 1076

- A CD containing the formal XML representation of the VHPI static and dynamic information model (binary readable)
 - Today the IEEE allows provision of a companion CD
Working Group status

• The WG is:
 – closing any remaining open issue
 – interacting with and reviewing Paul’s first draft
 – organizing in parallel a comprehensive review of the current VHPI specification
Road map

• Goal is to have a ballotable LRM by end of October and go to ballot by 2003 end.

• Started to:
 – incorporate critical sections affecting VHDL semantics first
 – identify experts to early review draft versions
VHPI industry implementations

• Many companies have already provided some level of VHPI implementation to customers
 – Vendors include: Cadence, Synopsys, FTL systems…
 – Tools already using VHPI: Debussy, Verisity, Vera…

• Key vendors projected to aim at compliance by DAC 2004
1076.6 VHDL Synthesizable Subset

Chair: J. Bhasker
jbhasker@esilicon.com
1076.6

- Standard for VHDL RTL Synthesis
- First standard out in 1999 (IEEE Std1076.6-1999)
- WG diligently worked on next rev for past couple of years
- Next revision draft is ready for ballot
- Revision PAR just approved by IEEE
- Ballot and standardization expected by EOY
- http://www.eda.org/siwg, siwg@eda.org
P1164 Status

Peter Ashenden
Ashenden Designs
P1164 Chair
peter@ashenden.com.au
vhdl-std-logic@eda.org
www.eda.org/vhdl-std-logic

10/7/2003
Standard Revision

- Changes to enhance usability
- Adding functions and operators
- Adding textio support
- No major conceptual changes
- To be balloted by end-2003
- www.eda.org/vhdl-std-logic
Accepted Changes To Date

• Uncomment "xnor" operators
• Shift operators for vector types
• Vector/scalar logic operators
 – scalar is replicated to vector’s length
• Logical reduction functions
• Match functions
Rejected/Pending Changes

• Rejected
 – Subtype of vector results
 – Capacitive strength (deferred)
 – 'image (refer to VASG)

• Pending
 – std_logic_textio package (donated by Synopsys)
 – to_string functions
Articulation with VASG

- Vector/scalar operators for bit_vector
- Logical reduction functions for bit_vector
 - or unary logical reduction operators
- Generalize 'image to composite types
- Radix-formatted textio
- To_string functions