Spice Interoperability with VHDL-AMS
Outline

- Problems and requirements
- VHDL-AMS models for Spice devices
- VHDL-AMS interface for tool-integrated components
- Conclusion and further direction
Compatibility Problems

- Spice is not a single language but rather a family of related languages

- Modification of the language standard (Berkeley) and of the device parameters by many EDA vendors

- A great deal of incompatibility among the Spice language dialects
 - Names of built-in primitives (can) differ
 - Names of parameters (can) differ
 - Names of ports (can) differ

- Different Spice language dialects should be supported
Some Requirements in Device Modeling

- Handling of model parameters
 - Defined on a .model card in Spice

- Model initialization
 - Parameter defaulting and range checking

- Handling of instance parameters
 - Defined on device instance

- Instance initialization
 - Parameter defaulting and range checking

- Interaction with Simulator Variables/Algorithms

Problems and Requirements

Special Problems

- VHDL-AMS models for Spice devices (primitives)
- VHDL-AMS interface for tool-integrated
 - Spice subcircuits
 - Spice primitives
- Identification of terminals (nodes) of VHDL-AMS and Spice models
- Handling of tool-integrated models in other languages
Library SPICE2VHD

Entities

<table>
<thead>
<tr>
<th>Entity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BJT</td>
<td>Spice Bipolar Junction Transistor (NPN/PNP)</td>
</tr>
<tr>
<td>BJT_TH</td>
<td>Spice Bipolar Junction Transistor with thermal terminal (NPN/PNP)</td>
</tr>
<tr>
<td>G8AVTTR</td>
<td>Spice Capacitor Model</td>
</tr>
<tr>
<td>PN1</td>
<td>Spice P-N Current Controlled Switch Model</td>
</tr>
<tr>
<td>PN1EN</td>
<td>Spice P-N Junction Diode (E)</td>
</tr>
<tr>
<td>PN1EN TH</td>
<td>Spice P-N Junction Diode with thermal terminal (E)</td>
</tr>
<tr>
<td>SR1</td>
<td>Spice Constant Current Source</td>
</tr>
<tr>
<td>SR1FP</td>
<td>Spice Exponential Current Source</td>
</tr>
<tr>
<td>SR1FT</td>
<td>Spice Inductor Model</td>
</tr>
<tr>
<td>SR1SE</td>
<td>Spice Pulse Current Source</td>
</tr>
<tr>
<td>SR1ML</td>
<td>Spice Pulse-Milli Linear Current Source</td>
</tr>
<tr>
<td>SR1N1</td>
<td>Spice Single-Frequency PM Current Source</td>
</tr>
<tr>
<td>SR1NS</td>
<td>Spice Stray-Neutral Current Source</td>
</tr>
<tr>
<td>SR1FT</td>
<td>Spice Junction Field-Effect Transistor (JFET, F)</td>
</tr>
<tr>
<td>SR1FT TH</td>
<td>Spice Junction Field-Effect Transistor (JFET, F) with thermal terminal</td>
</tr>
<tr>
<td>MNFET</td>
<td>Spice NMOSFETs (NMOSFETNS)</td>
</tr>
<tr>
<td>MNFET TH</td>
<td>Spice NMOSFETs (NMOSFETNS) with thermal terminal</td>
</tr>
<tr>
<td>MNFET激励</td>
<td>Spice NMOSFETs (NMOSFETNS) with thermal terminal</td>
</tr>
<tr>
<td>RESISTOR</td>
<td>Spice Resistor Model</td>
</tr>
<tr>
<td>RESISTOR_CAPACITOR</td>
<td>Spice Semiconductor Capacitor Model</td>
</tr>
<tr>
<td>RESISTOR_RESISTOR</td>
<td>Spice Semiconductor Resistor Model</td>
</tr>
<tr>
<td>RESISTOR_RESISTOR_TH</td>
<td>Spice Semiconductor Resistor Model with thermal terminal</td>
</tr>
<tr>
<td>VN1</td>
<td>Spice Voltage Controlled Switch Model</td>
</tr>
<tr>
<td>TH1</td>
<td>Spice Transmission Line</td>
</tr>
<tr>
<td>TH1UN</td>
<td>Spice Linear Voltage-Controlled Current Source</td>
</tr>
<tr>
<td>TH1UN VC</td>
<td>Spice Linear Voltage-Controlled Voltage Source</td>
</tr>
<tr>
<td>VN1C</td>
<td>Spice Constant Voltage Source</td>
</tr>
<tr>
<td>VN1FP</td>
<td>Spice Exponential Voltage Source</td>
</tr>
<tr>
<td>VN1SE</td>
<td>Spice Pulse Voltage Source</td>
</tr>
<tr>
<td>VN1ML</td>
<td>Spice Pulse-Milli Linear Voltage Source</td>
</tr>
<tr>
<td>VN1N1</td>
<td>Spice Single-Frequency PM Voltage Source</td>
</tr>
<tr>
<td>VN1NS</td>
<td>Spice Stray-Neutral Voltage Source</td>
</tr>
</tbody>
</table>

Package SPICE_PARAMETERS with functions for
- Model initialization and range checking
- Parameter defaulting and

Spice-like models in VHDL-AMS
- Parameter defaulting
- Port names
- Identifiers in accordance with Spice3F5
- Currently only Level 1 models

Example

Spice netlist

```spice
.MODEL VERTNPN NPN BF=80 IS=1E-18 RB=100 VAF=50
+ CJB=3PF CJC=2PF CJS=2PF TF=0.3NS TR=6NS

.SUBCKT diffPair c1 b1 e c2 b2
Q1 c1 b1 e vertNPN
Q2 c2 b2 e vertNPN
.ENDS
```
… cont‘d Example – VHDL-AMS (1)

library IEEE, SPICE2VHD;
use IEEE.ELECTRICAL_SYSTEMS.all;
use SPICE2VHD.SPICE_PARAMETERS.all;

entity diffPair is
 port (
 terminal C1, B1, E, C2, B2 : ELECTRICAL
);
end entity diffPair;
... cont’d Example - VHDL-AMS (2)

architecture a0 of diffPair is

constant vertNPN : BJT_DATA := SET_BJT_DATA (
 MODEL => NPN, BF => 80.0,
 ISS => 1.0E-18, RB => 100.0,
 VAF => 50.0, CJE => 3.0E-12,
 CJC => 2.0E-12, CJS => 2.0E-12,
 TF => 0.3E-9, TR => 6.0E-9);

begin
 Q1: entity BJT(SPICE)
 generic map (vertNPN)
 port map (c1, b1, e);
 Q2: entity BJT(SPICE)
 generic map (MDATA => vertNPN)
 port map (NC => c2, NB => b2,
 NE => e);

end architecture a0;
Package SPICE_PARAMETERS (1)

- Types for declaration of constants with model card data
 - RESISTOR_DATA
 - DIODE_DATA
 - BJT_DATA
 - ...

- Functions to initialize constants with model data
 - SET_RESISTOR_DATA
 - SET_DIODE_DATA
 - SET_BJT_DATA
 - ...

VHDL-AMS models for Spice devices
Package SPICE_PARAMETERS (2)

type MODEL_TYPE is (
 UNDEF, -- model type is not defined
 R, -- semiconductor resistor model
 C, -- semiconductor capacitor model
 SW, -- voltage controlled switch
 CSW, -- current controlled switch
 URC, -- uniform distributed rc model
 LTRA, -- lossy transmission line model
 D, -- diode model
 NPN, -- npn BJT model
 PNP, -- pnp BJT model
 NJF, -- n-channel JFET model
 PJF, -- p-channel JFET model
 NMOS, -- n-channel MOSFET model
 PMOS, -- p-channel MOSFET model
 NMF, -- n-channel MESFET model
 PMF -- p-channel MESFET model
);

Type declaration corresponds to different .model cards

.model vertnpn NPN ...
Package SPICE_PARAMETERS (3)

```vhdl
package SPICE_PARAMETERS is

  type BJT_DATA is array (NATURAL) of REAL;  -- implementation dependent

  function SET_BJT_DATA (  
    constant MODEL   : MODEL_TYPE;        -- type of BJT (NPN|PNP)  
    constant ISS    : REAL := 1.0E-16;   -- saturation current (in A)  
    constant BF     : REAL := 100.0;     -- ideal maximum forward BETA  
    constant NF     : REAL := 1.0;       -- forward current emission coeff.  
    constant VAF    : REAL := REAL'HIGH; -- forward Early voltage (in V)  
    ...  
  ) return BJT_DATA;

end package SPICE_PARAMETERS;
```

Initialization of VHDL-AMS models w.r.t. Spice3f5
Declaration of an entity Declaration

entity BJT is

 generic (MDATA : BJT_DATA ;
 AREA : REAL := 1.0;
 START : START_TYPE := UNDEF;
 IC_VBE : REAL := REAL'LOW;
 IC_VCE : REAL := REAL'LOW;
 TEMP : REAL := SPICE_TEMPERATURE);

 port (terminal NC : ELECTRICAL;
 terminal NB : ELECTRICAL;
 terminal NE : ELECTRICAL);

 begin

 assert AREA >= 1.0
 report "AREA >= 1.0 required." severity error;

 assert START = UNDEF or START = IC_OFF
 report "START must be UNDEF or IC_OFF" severity error;

end entity BJT;

Handling of optional terminals not quite clear
(see bulk connection)
Special Arrangements

- No access to simulator variables/algorithms
 - TSTEP => 0.0 or 1.0E-15
 - TSTOP => REAL‘HIGH
 - 1/TSTOP => 0.0
 - Infinite => REAL‘HIGH
 - TEMP => AMBIENT_TEMPERATURE from Package MATERIAL_CONSTANTS

- Handling of model and instance parameter
 - Default value => can be overwritten
 - No default value => value assignment required
 - Detect specification => default to UNDEF
 (REAL‘LOW if parameter is REAL)
Spice Models in SPICE2VHD

- Basic elements
 - RESISTOR, SEMICONDUCTOR_RESISTOR
 - CAPACITOR, INDUCTOR
- Controlled sources and lossless line
 - VCVS, VCCS, TLINE
- Independent voltage sources
 - VDC, VEXP, VPULSE, VPWL, VSINE, VSFFM
- Independent current sources
 - IDC, IEXP, IPULSE, IPWL, ISINE, ISFFM
- Device models
 - DIODE, BJT, MOSFET
Parameterized Models in SPICE2VHD_DEVICES

entity BJT_NPN is

generic
(
 AREA : REAL := 1.0;
 START : START_TYPE := UNDEF;
 IC_VBE : REAL := REAL'LOW;
 IC_VCE : REAL := REAL'LOW;
 TEMP : REAL := SPICE_TEMPERATURE);

port
(
 terminal NC : ELECTRICAL;
 terminal NB : ELECTRICAL;
 terminal NE : ELECTRICAL);

end entity BJT_NPN;

architecture QNL of BJT_NPN is

constant MODEL_CARD: BJT_DATA:= SET_BJT_DATA(
 MODEL => NPN,
 BF => 80.0,
 RB => 100.0,
 TF => 0.3E-9,
 TR => 6.0E-9,
 CJE => 3.0E-12,
 CJC => 2.0E-12);

begin

T1: entity SPICE2VHD.BJT(SPICE)

generic map (MDATA => MODEL_CARD,
 AREA => AREA,
 START => START,
 IC_VBE => IC_VBE,
 IC_VCE => IC_VCE,
 TEMP => TEMP);

port map (NC => NC,
 NB => NB,
 NE => NE);

end architecture QNL;

Entity identifier informs about primitive

Architecture identifier informs about used model card

See: http://fat-ak30.eas.iis.fraunhofer.de/vdalibs/doc
Interface to Spice Subcircuits

- Different solutions to instantiate Spice subcircuits from VHDL-AMS simulators

- Difficulties to exchange models

- What is needed
 - Standard how to „instantiate“ Spice subcircuits
 - Two problems
 - Declaration of the interface in VHDL-AMS
 - Mapping between Spice interface terminals and parameters and VHDL-AMS terminal ports and generic parameters resp.
Interface to Spice Primitives

- As known, no solution to instantiate Spice primitives in VHDL-AMS simulators
- „Work arounds“ using „subcircuit wrappers for primitives“
- Difficulties to exchange models

What is needed

- Standard how to „instantiate“ Spice primitives
- Problems
 - Declaration of the interface in VHDL-AMS
 - Mapping between Spice interface terminals and parameters and VHDL-AMS terminal ports and generic parameters resp.
 - Handling of .modelcards
Global nodes

- Global nodes can be declared in VHDL-AMS in a package

- Example

  ```vhdl
  package GLOBAL_NODES is
    terminal VDD : ELECTRICAL;
    terminal VSS : ELECTRICAL;
  end package GLOBAL_NODES;
  ```

- Different solutions to map Spice (global) nodes to nodes in VHDL-AMS depending on the simulator

- Problem:
 - Mapping between Spice and VHDL-AMS nodes
Conclusion and Further Directions

- No standard activities to „create“ VHDL-AMS models for Spice elements – if necessary extend SPICE2VHD
- Check whether
 - Standardization of a VHDL-AMS interface to Spice subcircuits and primitives is useful
 - Users are interested in it
 - EDA vendors are willing to support it
 - Other languages (Spectre, Verilog-A) should be handled in the same way
- If yes
 - Collect requirements
 - Go for same user interface in different tools
 - Avoid restrictions to vendors‘ implementations