B
UVM accellera) sysemeio

Universal Verification Methodology

(UVM)
Verifying Blocks to IP to SOCs and Systems
Organizers:
Dennis Brophy ‘ ® San Diego, CA
Stan Krolikoski A AUTOMATION June 5, 2011

Yatin Trivedi

A

®

Workshop Outline

10:00am — 10:05am
10:05am — 10:45am
10:45am — 11:25am
11:25am — 11:40am
11:40am — 12:20pm
12:20pm — 12:50pm

12:50pm — 1:00pm

AUTOMATION —

Dennis Brophy Welcome

Sharon Rosenberg UVM Concepts and Architecture
Tom Fitzpatrick UVM Sequences and Phasing
Break

Janick Bergeron UVM TLM2 and Register Package
Ambar Sarkar Putting Together UVM Testbenches

Al Q&A

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

A

Workshop Outline

v'10:00am — 10:05am Dennis Brophy Welcome

10:05am — 10:45am
10:45am — 11:25am
11:25am — 11:40am
11:40am — 12:20pm
12:20pm — 12:50pm

12:50pm — 1:00pm

AUTOMATION _

Sharon Rosenberg UVM Concepts and Architecture
Tom Fitzpatrick UVM Sequences and Phasing
Break

Janick Bergeron UVM TLM2 and Register Package
Ambar Sarkar Putting Together UVM Testbenches

Al Q&A

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce e a

LQ/"M dce 9// erd Systri:nMarﬂog.l

UVM Concepts and Architecture

Sharon Rosenberg
Cadence Design Systems

'a

o ..V AUTOMATION

UVM Core Capabillities

« Universal Verification Methodology

— A methodology and a class library for building advanced
reusable verification components

— Methodology first!
Relies on strong, proven industry foundations

— The core of the success is adherence to a standard
(architecture, stimulus creation, automation, factory usage, etc’)

We added useful enablers and tuned a few to make
UVM1.0 more capable

This section covers the high-level concepts of UVM
— Critical to successful deployment of UVM
— Mature and proven

¢ accellera
® AUTOMATION — DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

The Goal: Automation

e Coverage Driven Verification (CDV) environments
» Automated Stimulus Generation
» Independent Checking

» Coverage Collection Scoreboard
Checking
Coverage

Coverage

seed (4 Monitor Monitor

23098432
38748932
23432239
17821961
10932893
20395483
18902904
23843298
23432432 [l
24324322
55252255
09273822
13814791 Testqd
4098092
23432424
24242355
25262622 |

Packaged for Reuse
26452454

24524522 2
b DESIGN ll
AUTOMATION — DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems decelnera

: CoCe CoCo
v

Random :
Sequence Driver >

Generator

UVM Architecture:

Interface Level Encapsulation

uvm_agent

uvm_
sequencer

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Agents provide all the verification logic
for a device in the system

Instantiation and connection logic is
done by the developer in a standard
manner

A Standard agent has:

— Sequencer for generating traffic

— Driver to drive the DUT

— Monitor
The monitor is independent of the
driving logic
Agent has standard configuration
parameters for the integrator to use

Agent Standard Configuration

U EYOJEINE oo .| * Astandard agent is configured using an
P ' | enumeration field: 1S_active

Config: H § —

is_active: |

{UVM_ACTIVE | g * UVM_ACTIVE: _
‘min_addr: /i Actively drive an interface or device

16’0100 : » Driver, Sequencer and Monitor are
- passive allocated

« UVM_PASSIVE:
e Only the Monitor is allocated

« Still able to do checking and collect
coverage

» Other user-defined configuration parameters
can also be added

« Example: address configuration for
slave devices

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce/lera

g ' AUTOMATION “

uvm: Configurable Bus Environment

Allows changing the number of

Some agent config agents without further
parameters come from the configuration per agent

environment config

master agent slave agent grbiter agent
S—— sequencerf P 9 sequencer

monito . nonitor
Sometimes common '

for all agents

‘ I UllvTl I

Bus level monitoring
Env’s allow reuse at the interface level! can be used by all

agents
dccenera

DUT

SN pESIGN
[.‘ AUTOMATION —

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

UVM Configuration Mechanism

* The configuration mechanism allows a powerful way for
attribute configuration
e Configuration mechanism advantages:

— Mechanism semantic allows an upper component to
override contained components values
* No file changes are required

— Can configure attributes at various hierarchy locations

— Wild cards and regular expressions allow configuration of
multiple attributes with a single command

— Debug capabilities

— Support for user defined types (e.g. SV virtual interfaces)
— Run-time configuration support

— Type safe solution

¢ accellera
® AUTOMATION DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

UVM1.0 Configuration
En h ancem entS (CO nt’) Check if configuration

4 exists
class uvm_config_db#(type T=int) extends uyf resource db#(T);

static function bit set (uvm _componént cntxt,
string iInst _name,string fTielg name, T value);

static function bit get (uvm_cogfonent cntxt,
string inst_name,string IAdeld name, ref T value);

static function bit exists(.);

static function void dump(); Dump the data base
static task wait_modified(.); : :
endclass Wait for value to be set in

the uvm_config_db

/I run-time configuration example:
task mycomp::run_phase (uvm_phase phase);
uvm_config_db#(int)::set(this, “*”, “field”, 10);
#10; uvm_config_db#(int)::set(this, “a.b.c”, “field”, 20);
endtask

Note — all uvm_config_db
functions are static so they
must be called using the ::
operator

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

5 15t accellera

Virtual Interface Configuration
Example

function void ubus bus monitor:: connect phase(uvm_phase phase);
1T (luvm_config_db#(virtual ubus 1f)::
get(this, “7,"vift", vif

else

“uvm_error("NOVIF" ,{"virtual interface mu be set for: ",

get_full_name(),".vif"}) Built-in checking
endfunction: connect_phase

// setting the virtual interface from the top module
module ubus_top;

ubus_if ubus if0(); // instance of the interface

initial begin
uvm_config_db#(virtual ubus 1f)::

set(null,"*_ubus demo tbO.ubusO0","vif'", ubus 1T0);

run_test();

Setting in the top removes hierarchy

dependencies in the testbench,
allows consistency and other
endmodule configuration capabilities

end

r.‘;«‘_‘_‘:‘};zv"AUTOMATION

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Where SV Language Stops and UVM Begins

Example: Data Items

class data packet c ;
string pkt_name;
rand pkt_header _c header;
rand byte payload [];
byte parity;
rand parity e parity type;
rand iInt ipg_delay;
endclass

Does language alone support all the necessary customization operations?

« Randomization No! Only randomization is defined
/"« Printing l: in the SystemVerilog LRM

 Cloning

« Comparing
* copying | _| UVM provides the rest!]
» Packing

\ Transaction Recording /

a ler
e ;. AUTOMATION DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce e a

Enabling Data Item Automation

derived from uvm_sequence_item

class data_packet c ; extends uvm_sequence_rtem;
string rev_no = “v1.1p”;
rand pkt hdr c¢ header; //class:{dest addr, pkt length}
rand byte payload [];
byte parity;
rand parity e parity_ty Enables all automation for

rand int - .aGE BV data packet ¢ fields

// Tield declarations an tomation flags
“uvm_object utils _begin(data packet c)
“uvm_field _string(rev_no, UVM DEFAULT+ UVM_NOPACK)
“uvm_Tield object(header, UVM DEFAULT)
“uvm_Tield array int(payload, UVM_DEFAULT)
“uvm_field _int(parity, UVM_DEFAULT)
“uvm_field _enum(parity e, parity_type, UVM DEFAULT)
“uvm_Tield _int(ipg_delay, UVM _DEFAULT + UVM_NOCOMPARE)
“uvm_object utils _end

// Additional: constraints

endclass : data_packet _c Specify field level flags:
UVM_NOCOMPARE, UVM_NOPRINT, efc.

%QES!(EN
r.‘ - AUTOMATION

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

http://www.ovmworld.org/index.php�

Data Type Automatian

Name Type Value
// two instances of data packet ¢ |-~~~ TTTTTooTToooToTooToooooo
data_packet c packetl, packet2; ngsa;:';et :i‘:‘:‘ﬁpa‘:ket—c V?“Zg
inrtial begin i} heaaer pkt_hgadenJ: @528
// create and randomize new pack dest_addr integral “ho5
packetl = new(*my_packet’); pkt_length integral "d29
assert(packetl.randomize()); payload da(integral) -

// print using UVM aW
packetl.print(); co

// copy using UVM automation

to
packet2 = new(“copy_paffgsﬁ)f’)' an
packet2.copy(packetl));

packet2.rev_no = “v1.1s”;
// print using UVM tree printer |[---

packet2._print(

uvm_default_tree prinTery,

end

L Implementation for performance or

UVM also allows manual

other reasons

copy_packet: (data packet c@489) {
rev_no: vl.1s
header: (pkt _header_c@576) {
dest _addr: "h25
pkt _length: “d29
+
payload: {
[0]: "h2a
[1]: “hdb
[28]: "h21
+
parity: "hd9
parity_type: GOOD_PARITY

ipg_delay: "d20
+

AUTOMATION

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems @

http://www.ovmworld.org/index.php�

UVM Messaging Facility

 Messages print trace information with advantages over
$display:

 Aware of its hierarchy/scope in testbench
« Allows filtering based on hierarchy, verbosity, and time

“uvm_info(""PKT™, "Packet Sent*, UVM_LOW);

*Output em pin N,
UVM_INFO myfile.sv(15) @10 uvm_test top.test.generator [PKT]:
Packet Sent

« Simple Messaging:

— ‘uvm_*(string id, string message, <verbosity>);
 Where * (severity) is one of fatal, error, warning, info

e <verbosity> is only valid for uvm_info

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce//era

'
f,:‘ AUTOMATION

UVM Sequences

e A sequencer controls the generation of random stimulus
by executing sequences

* A seguence captures meaningful streams
of transactions
— A simple sequence is a random transaction generator

— A more complex sequence can contain timing, additional
constraints, parameters

e Seqguences:
— Allow reactive generation — react to DUT

— Have many built-in capabillities like interrupt support, arbitration
schemes, automatic factory support, etc

— Can be nested inside other sequences

— Are reusable at higher levels
O 25 gher eV y accellera
[DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

UVM Tests and Testbenches

module top ();

* Placing all components in the test

class test extends ... requires lot of duplication
class tb extends uvrBusve » Separate the env configuration and
the test
I — TB class instantiates and configures
reusable components
< « Tests Instantiate a testbench
g — Specify the nature of generated traffic
n — Can modify configuration parameters
S as needed
S « Benefits
a — Tests are shorter, and descriptive
:;RDRV‘I — Less knowledge to create a test
— Easier to maintain — changes are

done in a central location

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

f. . AUTOMATION

A

UVM Simulation Phases

 When using classes, you need to manage environment
creation at run-time

e Test execution is divided to phases
— Configuration, testbench creation, run-time, check, etc

e Unigque tasks are performed in each simulation phase

— Set-up activities are performed during “testbench creation”
while expected results may be addressed in “check”

— Phases run in order — next phase does not begin until previous
phase is complete

« UVM provides set of standard phases enabling VIP
plug&play
— Allows orchestrating the activity of components that were
created by different resources

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

AUTOMATION

UVM Simulation Phases

UVM component’s built-in phases - run in order
Note: All phases except run() execute in zero time

Build Top-Level Testbench Topology

connect Connect environment topology

ool olo] = i[eldBN Post-elaboration activity (e.g. print topology)

Seae s nlelElelg Configure verification components

“reset

_1-—" o a
run SLLLLESEE (asks - Run-time execution of the test

“Shutdown
extract Gathers details on the final DUT state

Processes and checks the simulation results.

Simulation results analysis and reporting

All phase names have postfix “ phase”

[]
Cloesicn accellera
f.‘jAgngAUTOMATm“ DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

UVM Testbench Example

Extends from uvm_env

class bridge_tb extends uvm_env;

“uvm_component_utils(bridge_tb) o :
Instances of reusable verification

apb_env apb; // APB 0OVC / components and module verif
ahb_env ahb; // AHB 0VC component

bridge mod _env bridge mod ; // Module OVC

virtual function void build_phase(uvm_phase phase)_ = ®6lajile[FIf=REE[alos N6 (6110}
super .buirld_phase(phase);
uvm_config_db#(uvm_active passive®enum)::set(this,

“apb.slave*”,”is_active”, UVM_ACTIVE);
uvm_config_db#(int)::set(this, ‘“ahb”,”master_num”, 3);
uvm_config_db#(uvm_active_passive_enum)::set(this,

“ahb.slave[0]”, “is_active”, UVM_PASSIVE); Create and build

o o voe id te(=apb”, this) using a standard
apb = apb_env::type id::create(“apb™, is); :
ahb = ahb_env::type id::create(“ahb”, this); mechanism
bridge_mod = bridge_mod_env::type_ id::create
endfunction The test creates an instance of the
endclass: bridge_tb : :
tesbench, overrides constraints,

and sets the default sequences

“bridge mod”

% AUTOMATION
>

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Overriding SV Components
and Data Objects

« UVM Provides a mechanism for overriding the
default data items and objects in a testbench data_packet_c driver

o “Polymorphism made easy” for test writers B short_packet_c driver vi1

Replace ALL instances:
object::type_id::setTtype_oyerride(

derived_obj::get_type()) agent[0] agent[1]
Example:

iiiiiii' iiiiiii'

B B

data packet c::type 1d::set type override _ :
(_p _c::get_type()) 3 (I 3 |IE

Replace specific instances:

object::type_i1d::set_inst _override
(derived_obj::get _type(), “hierarchical_path™);

agent[0] agent[1]

Example:

iiiiiiii iiiiiii'
B A
data_packet_c::type_id::set_inst_oyg;;ide———“’———

-- driver | [ualellitelg driver | [ilelglite]s
(short_packet c::get _type(), u

“my_env.agent|[0].sequencer™);

my _driver::type_id::set_inst_override
(driver_vl::get_type(), “my_env.agent[1]”);

¢,]
r.}_‘_;};}i’fAUTOMATION DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce era

http://www.ovmworld.org/index.php�

r.‘;«‘_‘_‘:‘};zv"AUTOMATION

The Test Launching

I\/Iechanlsm

Allows executio

Multiple tests

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Creates test and starts
simulation phases for

all components

DUT snapshot

|
| [rg—a L_ module top()
: Nt 1 import ... // uvm lib, tests, and packages
| 1] test +
: th IF || IF IF rst | | clks
|
|
: DUT
|
: 1 U initial begin
: | Function void | - run_test();
: | build(); end
B endfunct — | e
! | enduncion | endmodule : top
|
|

Compile the entire test suite together and use command-

line option to select a test:
% <sim> —F run.f +UVM_TESTNAME=test3

Extensions Using Callbacks

Like the factory, callbacks are a way to affect an existing
component from outside

The SystemVerilog language includes built-in callbacks
— e.g. post_randomize(), pre_body()

Callbacks requires the developer to predict the extension
location and create a proper hook

Callbacks advantages:
— They do not require inheritance
— Multiple callbacks can be combined

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

L]
AUTOMATION n

accellera

UVM Report Catcher Callback

Goal: Message Manipulation

class my catcher extends This example demotes MYID to be
uvm_report_catcher]Gy Uls
virtual function action_e catch
1T(get _severity(D==UVM_ERROR && get 1d()=="MYID")
begin
set_severity(UVM_INFO);
set_action(get_action() - UVM_COUNT);
end
return THROW; // can throw the message for more
manipulation or catch i1t to avoid further processing
endfunction
endclass

// In testbench run phase » can disable a callback using the
my catcher catcher = new;
uvm_report cb::add(null, cher);
“uvm_error(MYID", "Thp& one should be demoted™)
#100;
catcher.callback mode(0); //disable the catcher
“uvm_error(MYID", "This one should not be demoted')

¢ accellera
ro‘;;i;..‘j;:"hﬁfdﬁ”"o“ DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

built-in callback _mode() method

Command-line Processor
Class

 Provide a vendor independent general interface
to the command line arguments

e Supported categories:

— Basic Arguments and values
o get_args, get_args_matches
— Tool information
» get_tool name(), get tool version()

— Built-in UVM aware Command Line arguments

e Supports setting various UVM variables from the command
line such as verbosity and configuration settings for integral
types and strings

* +uvm_set config_int, +uvm_set config_string

S Mler,
® AUTOMATION “ DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems decelnera

Command-line Processor Example

class test extends uvm_test;

function void start _of simulation()2
uvm_cmdline_processor clp;
string arg_values[$];
string tool, version;
clp = uvm_cmdline_processor::get
tool = clp.get_tool_name(); Use the class methods
version = clp.get _tool version();
“uvm_info("MYINFO1", (*"Tool: %s, Version
UVM_LOW) Get argument values
void®" (clp.get_arg value +foo="", arg_values));
‘uvm_info("MYINFO1","'arg_values size : %0d", arg values.size(),
UVM_LOW));
for(int 1 = 0; 1 < arg_values.size(); i++) begin
“uvm_info("MYINFO1", "arg_values[%0d]: %0s', 1, arg values|[i],
UVM_LOW));

Fetching the command line processor

singleton class

- %s', tool, version,

end
endfunction

endclass N
G 2
ro "«.;_‘;‘,»:": AUTOMATION DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

UVM Concepts Summary

« UVM Basics are proven and widely in use with all
simulators
* Provides both reuse and productivity

« UVML1.0 adds additional features to complement and

tune the existing capabillities
— UVM 1.1 includes bug fixes after initial users’ feedback

If you have a new project, UVM is the way to go!

'a accellera
® AUTOMATION DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

A

Workshop Outline

v'10:00am — 10:05am Dennis Brophy Welcome

v'10:05am — 10:45am Sharon Rosenberg UVM Concepts and Architecture

10:45am — 11:25am
11:25am — 11:40am
11:40am — 12:20pm
12:20pm — 12:50pm

12:50pm — 1:00pm

AUTOMATION n

Tom Fitzpatrick UVM Sequences and Phasing
Break

Janick Bergeron UVM TLM2 and Register Package
Ambar Sarkar Putting Together UVM Testbenches

Al Q&A

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce e a

B
UVM accellera) sysemeio

UVM Sequences & Phasing

Tom Fitzpatrick
Mentor Graphics

'a

A AUTOMATION

Sequences

* Decouple stimulus specification
from structural hierarchy

— Simple test writer API

e Sequences define transaction
streams

— May start on any matching
sequencer

e Sequences can call children
e Built-in get_response() task

* Sequences & transactions
customizable via the factory

* Driver converts transaction
to pin wiggles

[]
% DESIGN /l
fo" -/ AUTOMATION DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce era

Using Sequences And
Sequence ltems

A sequence is a UVM object — to start it:

— Construction using the factory:

* spi_tfer_seq spi_seq =
spi_tfr_seq::type_id:.create(“spi_seq”);

— Configure - explicitly or via constrained randomization

— Start execution on the target sequencer:
e Spi_seq.start(spi_sequencer);

e Within a sequence a sequence_item Is:

— Constructed

— Scheduled on a sequencer with start_item()
» Blocking call that returns when the driver is ready
— Configured — explicitly or via constrained
randomization

— Consumed with finish_item()

S Mler,
® AUTOMATION n DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems decelnera

Sequence Item Example

class spi_seq_item extends uvm_sequence_item;

«Data fields:
‘Request direction rand (stimulus generation)

// UVM Factory Registration Macro
“uvm_object_utils(spi_seq_item)

*Response direction non-rand

// Data Members (Outputs rand, inputs non-rand)
rand logic[127:0] spi_data;
rand bit[6:0] no_bits;

rand bit RX NEG: *UVM Object Methods
*These methods get generated by the
// Analysis members: automation macros

logic[127:0] mosi;
logic[7:0] cs;

*Write them yourself to improve performance
If desired

// Methods
extern function new(string name = "'spi_seq_iten"

extern function void do_copy(uvm_object rhs);

extern function bit do_compare(uvm_object rhs, uvm_comparer comparer);
extern function string convert2string();

extern function void do_print(uvm_printer printer);

extern function void do_record(uvm_recorder recorder);

endclass:spi_seq_item

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce/lera

% AUTOMATION
>

Basic Sequence-Driver API

Sequence parameterized

by request/response types
body() method

class my seq extends uvm_sequence #(my _req, my_rsp); _
task body ()< defines
for(int unsigned i = 0; i < 20000; i++) begin what happens
req = my _req::-type_id::create(“req”);
start_item(req); class my driver extends uvm_driver;
assert(req.-randomize()); task run_phase(uvm_phase phase);
finish_item(req); .. begin
get_response(rsp); seq_item_port.get_next_item(req):
end drive_transfer(req);
endtask rsp.set_id_info(rsp);
endclass seq_item port.item_done():
seq_item_port.put_response(rsp);
end
endtask
endclass

Gl
f. . AUTOMATION

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce/lera

Sequence API Options

Explicit Using Macros
req = my _req::type_id::create(“req”); ~uvm_do(req)
start_item(req); get_response(rsp):

assert(req.randomize());
finish_item(req);
get_response(rsp);

« Macros allow constraints to be passed in

* Macros require pre-defined callbacks to modify
behavior

* Multiple macro variations

« EXplicit API provides greater control and easier
debug

S Mler,
® AUTOMATION “ DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems decelnera

Seqguencer and Driver

typedef uvm_sequencer#(my_req,my_rsp) my_ seqguencer;
class my master_agent extends uvm_agent;
function void build _phase(uvm _phase phase);
void” (uvm_config_db#(bitstream_t)::get(this,*”, “is_active”,
1IT(is_a) begin
seqr = my_sequencer::type_id::create(“seqr”, this);
driver = my driver::type id::create(“driver”, this);
end
endfunction
function void connect phase(uvm_phase phase);
1IT(is_a)
driver.seq_item port.connect(seqr.seq_item _export);
endfunction
endclass

By default, you don’'t need

to extend uvim_sequencer

% AUTOMATION
>

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

IS a);

Starting a Sequence

: EE)(FHIC“t Iiiiiiiiiiiliii'iil
task xxx_phase(uvm_phase phase); any run-time phase

my seq.start(seqr);

Sequencer

o Implicit (Default Sequence)
— Using wrapper

uvm_config_db#(uvm_object_wrapper)::set(this,hagent-sqr{&xx_phase“,
"default_sequence', my seq::type 1d::get());

Wrapper

— Using instance
myseq = my_seq::type i1d::create(“myseq”);

uvm_config_db#(uvm_sequence base)::set(this,“agent.sqr.xxx_phase",
"default_sequence', myseq);

my_seq.set _priority(200);
Sequence
a

r. % AUTOMATION DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce//era

Calling start()

task xxx_phase(uvm_phase phase);
my seq.start(seqr); seqr,

ovm—scyucreor—oooo- parent = null,

integer priority = 100

bit call _pre post = 1);

my sed.pre_start()
: my_seq.-pre_body();
Stimulus parent.pre_do(0);
code parent.mid_do(this); If call_pre_post ==
my seq.body();
parent.post _do(this);
my seq.post _body();
my_seq.post_start();

r.}_‘_;};}i’fAUTOMATION DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce era

If parent!=null

Sequence Library @eta)

class uvm_sequence_library #(type REQ=int,RSP=REQ) Sequence Library
extends uvm_sequence #(REQ,RSP); IS-A Sequence

class my _seqg_lib extends uvm _sequence library #(my_item); :
“uvm_object utils(my _seq lib) my_seq_lib
“uvm_sequence library utils(my_seq_lib)
function new(string name=""");
super .new(name) ;

init_sequence_library(Q;
endfunction class my seql extends my_ seq; \\-—////,,_

“uvm_object _utils(my_seql)
“uvm_add to seq lib(my _seql,my seq_lib)

endclass

class my seq2 extends my_ seq;
“uvm_object _utils(my_seq2)
‘uvm_sequence_utils uvm_add to seq lib(my_seq2,my seq_ lib)

endclass

‘uvm_sequencer_utils
et. al. deprecated

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce/lera

endclass

%DESIGN
r.‘ - AUTOMATION

Sequence Library

uvm_config_db #(uvm_sequence lib mode): :set(this,
"'sequencer .xxx_phase*, “default_sequence.selection_mode”, MODE);

typedef enum Random sequence selection
{ UVM_SEQ LIB _RAND

UVM_SEQ LIB RANDC? Random cyclic selection
UVM_SEQ LIB_ITEM,
UVM_SEQ LIB_USER

} uvm_sequence_lib_mode€ *Emit only items,no sequence execution

*User-defined random selection

function iInt unsigned select _sequence(int unsigned max);
// pick from 0 <= select _sequence < max;
endfunction

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce/lera

%BES!GN
r.‘ - AUTOMATION

UVM Phasing

common
build

connect

end_of_elaboration

start_of_simulation

extract
check

report

-
ovM VP Several new runtime phases

uvm
pre_reset

In parallel with run_phase()

ereset

epost_reset

pre_configure

econfigure

“post_contgurs To simplify examples, these
”:::‘” slides will show a reduced s
epost_main Of phases

pre_shutdown

eshutdown

post_shutdown reset m

>

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

et

Phase Synchronization

* By default, all components must allow all
other components to complete a phase
before all components move to next phase

VIP 1: | reset | configure | | main | | shutdown |
VIP 2: | configure | | main | shutdown |
VIP 3: | reset | | configure | main | | shutdown |

>

'a e
[e ;. AUTOMATION DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce era

Phase Semantics

* In UVM Reference Guide, the semantics
for each phase are defined, e.q.

reset
Upon Entry
sIndicates that the hardware reset signal is ready to be asserted.
Typical Uses
sAssert reset signals.

Components connected to virtual interfaces should drive their output to their
specified reset or idle value.

Components and environments should initialize their state variables.
*Clock generators start generating active edges.
*De-assert the reset signal(s) just before exit.
*\Wait for the reset signal(s) to be de-asserted.
Exit Criteria
*Reset signal has just been de-asserted.
*Main or base clock is working and stable.
*At least one active clock edge has occurred.

& *Qutput signals and state variables have been initialized. //
'e . AUTOMATION n DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems decelnera

uvm_component Basic API

Implement these to specify behavior

for a specific phase; threads started
here are auto-killed

task/function <name> phase(uvm_phase phase)
phase.raise_objection(this);
phase.drop _objection(this);

Call these to prevent and re-allow
the current phase ending

function void phase started(uvm _phase phase)
function void phase ended(uvm _phase phase)

Implement these to specify
behavior for the start/end of
each phase; threads started

here are not auto-killed)
[]
&RE%EWAT"’" DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce era

uvm_component Example

task main_phase(uvm_phase phase);
phase.raise_objection(this);
. main test behavior, e.g. send 100 e =6 RN TelggEtiler1)

phase.drop objection(this); when main phase
endtask starts (after all
phase_started() calls)

function void phase started(uvm _phase phase);
IT (phase.get name()==*“post_reset”)
fork background thread(); join_none
endfunction

Called automatically
when phase first starts.
Thread forks when
phase is post_reset.

= DESIGN
f. _-” AUTOMATION -
A9 45

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

L]
AUTOMATION “

User-defined Phases

e |[ntegrator can create one or more phases

 Integrator can create schedules with any
mix of standard and user-defined phases
then assign components to use one of

those schedules

uvm_domain common =

“want new phase uvm_domain: :get_common_domain();

na_med cfg2 after | common.add (cfg2 phase::get(),

configure and beff)re _after_phase(configure_phase::get(),
post_configure _before_phase(post_configure phase.get())
);
New
sched: | configure | cfg2 | post_configure |

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce e a

Separate Domains

 Sometimes it Is OK for a part of the
design/environment to do behavior that is
out of alignment with the remainder
— e.g. mid-sim reset of a portion of the chip

— e.g. one side starts main functionality while
other side is finishing configuration

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce e a

Domains

 Domains are collections of components
that must advance phases in unison

— By default, no inter-domain synchronization

VIP 1: | reset I configure I | main | I shutdown I
VIP 2: | configure | main | shutdown |
Domain A

Domain B

‘ VIP 3: | reset | configure | main | shutdown |

time
DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce//era

>

'
[,: AUTOMATION “
B

Domain Synchronization

 Domains can be synchronized at one,
many, or all phase transitions.

domainA.sync(.target(domainB), .phase(uvm _main_phase::get()));

Two domains sync’d at main

VIP 1: | reset | configure | | main | shutdown |
Domain A
VIP 2: | reset | configure | main | shutdown Jomain 5

time
DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce//era

AUTOMATION

Fully Synchronized Domains

 If two domains are fully synchronized and
one domain jumps back, the second
domain will continue In its current phase
and wait for the first to catch up

phase.jump(uvm_reset phase::get())

reset | config | main | shutdown
Domain A

VIP 2: | reset | configure | main | | shutdown I
omain B

time
DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems accellera

VIP 1: |reset | | configure |

®
® AUTOMATION “
B

Sequences and Phases

Raise objection first

class my seq extends uvm_sequence#(my_req,my rsp);
virtual task body();

1T (starting_phase != null) - Drop objection last
starting phase.raise objection(this,

“Starting my_seq™);

.//body of seqguence

iIT (starting_phase != null)
starting phase.drop_objection(Cthis,
“Ending my_seq”);

Phase won't end until my_seq completes

Unless you do a jump()

endtask
endclass

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce/lera

%DESIGN
r.‘ - AUTOMATION

Ending Phases

task run_phase(uvm_phase phase);
phase.raise _objection();
seg.start();
phase.drop _objection();
endtask

Must raise_objection()

Phase ends when all

before first NBA

objections are dropped

VIP:

extract | check | report

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce/lera

t

st
|50 Roromanon

Ending Phases

task main_phase(uvm_phase phase);
phase.raise _objection();
seg.start();
phase.drop_objection();

endtask

Must raise_objection()

Phase ends when all

before first NBA

objections are dropped

‘mainseq
VIP:

t

LN pESIGN
7[> auTomaTioN

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce/lera

Delaying Phase End

task main_phase(uvm_phase phase);
while(Yending) begin

1f(ending)
phase.drop _objection();

virtual function void

Drop when
really done

ending = 1;
1T(busy)

ction

task main_phase(uvm_phase phase);
phase.raise _objection();
seg.start();
phase.drop _objection();

endtask

phase ready to end(uvm_phase phase);
1T(phase.get name==“main’) begin

phase.raise_objection();

all_dropped resets
phase objection

calls
phase ready to _end()

|::] last chance to raise
‘ an objection

‘mainseq
VIP:

post_main |

t

% AUTOMATION
>

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Ending Phases

* Phase objection must be raised before first
NBA

 Phase forks off processes
— wait for phase.all _dropped<

— call phase ready to _end()
e component can raise objection

— Check objection count
— call phase_ended()
— kill_processes

— execute successors

S Mler,
® AUTOMATION “ DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems decelnera

Test Phase Example

task reset phase (uvm_phase phase);
reset _seq rst = reset _seq::type id::create(“rst”);
phase.raise_objection(this, “resetting”);

task configure phase (uvm_phase phase); parallel

configure_seq cfg = configure_seq::type id::create(“cfg”);
phase.raise_objection(this, “configuring dut™);
cfg.start(protocol sqr);
phase.drop _objection(this, “dut configured™);

endtask: configure phase

task main_phase (uvm_phase phase);
test functionl _seq tst = test functionl seq ::type_id::create(‘“tst”);
phase.raise_objection(this, “functionality test”);
tst.start(protocol sqr);
phase.drop_objection(this, “functionality tested”);

endtask: main_phase

%BES!GN
r.‘ - AUTOMATION

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

(Test) Component runs different
rst.start(protocol_sqr); sequences in each phase.
phase.drop_objection(this, “ending reset”); [l cHEN/E] RS <To (Flelalelsising ATl

endtask: reset_phase on different sequences in

A

®

Workshop Outline

v'10:00am — 10:05am
v'10:05am — 10:45am
v'10:45am — 11:25am
11:25am — 11:40am
11:40am — 12:20pm
12:20pm — 12:50pm

12:50pm — 1:00pm

AUTOMATION

Dennis Brophy
Sharon Rosenberg
Tom Fitzpatrick
Break

Janick Bergeron
Ambar Sarkar

All

Welcome
UVM Concepts and Architecture

UVM Sequences and Phasing

UVM TLM2 and Register Package
Putting Together UVM Testbenches

Q&A

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce e a

Accellera at DAC

 Accellera Breakfast at DAC: UVM User Experiences

— An Accellera event sponsored by Cadence, Mentor, and Synopsys
— Tuesday, June 7, 7:00am-8:30am, Room 25AB

e Accellera IP-XACT Seminar

— Anintroduction to IP-XACT, IEEE 1685, Ecosystem and Examples
— Tuesday, June 7t, 2:00pm-4:00pm, Room 26AB

 Birds-Of-A-Feather Meeting

— Soft IP Tagging Standardization Kickoff
— Tuesday, June 7, 7:00 PM-8:30 PM, Room 31AB

éq,
Pe' . AUTOMATION “
B

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems accellera

é

Workshop Outline

v'10:00am — 10:05am
v'10:05am — 10:45am
v'10:45am — 11:25am
v'11:25am — 11:40am
11:40am — 12:20pm
12:20pm — 12:50pm

12:50pm — 1:00pm

AUTOMATION “

Dennis Brophy
Sharon Rosenberg
Tom Fitzpatrick
Break

Janick Bergeron
Ambar Sarkar

All

Welcome
UVM Concepts and Architecture

UVM Sequences and Phasing

UVM TLM2 and Register Package
Putting Together UVM Testbenches

Q&A

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce e a

B
UVM accellera) sysemeio

UVM Transaction Level Modeling (TLM2)

Janick Bergeron
Synopsys

'a

A AUTOMATION

L]
® AUTOMATION

TLM-1.0

« Unidirectional put/get interfaces

e|nitiator eTarget e[nitiator eTarget

e Simple message-passing semantics

 No response model
— E.g. What did | read back??

 Never really caught on in SystemC

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

L]
AUTOMATION n

Why TLM-2.07?

» Better interoperability over TLM-1.0
— Semantics
— Pre-defined transaction for buses

* Performance
— Pass by reference (in SystemC)
— Temporal decoupling

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce e a

g

TLM-2.01n SV vs SC

 Blocking transport interface ¥

* Nonblocking transport interfaces ¥
e Direct memory interface %

e Debug transport interface %
 Initiator sockets ¢

« Target sockets v

« Generic payload ¥

e Phases ¥

 Convenience sockets %

 Payload event queue ¥

e Quantum keeper %

* |nstance-specific extensions

* Non-ignorable and mandatory extensions
e Temporal decoupling ¢

AUTOMATION “

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

accellera

A

TLM-2.0 Semantics

* Blocking

— When the call returns,
the transaction Is done

— Response Is annotated

* Nonblocking

— Call back and forth

* Protocol state changes
e Transaction Is updated

— Until one says “done”

AUTOMATION “

e|nitiator eTarget

<€

D |

e|nitiator eTarget

<€

L

>

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

accellera

Generic Payload Attributes

 Pre-defined bus transaction

Command uvm_tim_command_e No

Address bit [63:0] Interconnect only
Data byte unsigned [] Yes (read command)
Data length int unsigned No

Byte enable pointer byte unsigned [] No

Byte enable length int unsigned No

Streaming width int unsigned No

Response status uvm_tlm_response _status e Target only
Extensions uvm_tim_extension_base [] Yes

Q accellera
AUTOMATION I:l DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Connecting to SystemC

e Tool-specific mechanism
— Not part of UVM

eSystemVerilog

spemrion

eCopy across

at method call
and return

£
—%

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce//era

L]
® AUTOMATION n
B

TLM-2.0 Bridge Between SV & SC

* Proxy sockets terminate the TLM2
connections in each language

— Create SV/SC bridge

ePredefined
for GP in VCS

oInitiator | eProxy Trgt

D [*Pack/unpack

I <€
|
|
eUnaware of
language eUser-defined for eUnaware of
crossing GP extensions language
G or non-GP crossing
r. . AUTOMATION DAC Workshop on Universal Veri

B
UVM accellera) sysemeio

UVM Register Model

Janick Bergeron
Synopsys

'a

A AUTOMATION

Overall Architecture

Spec

v

Bus-specific
r/w item

SN pESIGN
[." “» AUTOMATION “

—»[Generator]— -

Generic
physical r/w

|

Pre-Defined
Sequences

A 4

User-Defined
Sequences

A 4

Register Model

DUT

Backdoor

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce/lera

Specification & Generation

System MS-
IP-XACTJ RDL J SQL J CSV J Word J
-)
X 0 =
] Vendors
Generator

Register Model

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce//era

AUTOMATION

Physical Interfaces

* Register model abstracts
— Physical interfaces

— Addresses

— Endianness s

User
perspective

Rl.read(...); R1
4—) F-{é:write(...); RegiSter V R3
F-{é:read(-..); MOdeI < ple—>{ R2

Perspective
stays the same
DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems accel/era

'
[.:‘ AUTOMATION

Mirror

* Register model mirrors content of registers
In DUT
—“Scoreboard” for registers
— Updated on read and write()
— Optionally checked on read()

Register
Model =

4 <«— API RS
\-Af“ R2

R1

R2

R3
: ler,
AUTOMATION DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce e a

Back-door Access

 Must define HDL path to register in DUT

— Generator-specific
e Access RTL directly in zero-time via VPI

— May affect simulator performance

' V.
! R1
4 —b AP RS
R2
R1
R2

Mirror is

R3

implicitly
updated

¢
Eo . AUTOMATION ification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

DAC Workshop on Universal Veri

§

Programmer’s View

AUTOMATION

Multi-address Register {

Array of Registers &g

Array of Register Files &

I -

RO
F1 F2 F3
F4...
..F4
F5 F6
F5 F6
|
|
F5 F6
F7 F8
F9 F10
F7 F8
F9 F10
|
|
F7 F8
F9 F10
MO

DAC Workshop on Universal Verification Methodology (UVM)TV

erifying Blocks to IP to SOCs and Systems

RO
R1

R2

A[0]
A[1]

A[255]

RFO[0]
RF1[0]
RFO[0]
RF1[0]

RFO[7]
RF1[7]

MO[0..65535]

§

Class View

 One class per field
* One class per register

endclass

class R1 reg extends uvm reg;
uvm_reg_Tield F1;
uvm_reg_Tield F2;
uvm_reg_Tield F3;

— Name

Make sure names
are different from

_ AddreSS base class methods

— Contained fields
— Read/Write methods

AUTOMATION

Generated |

RO RO
F1 F2 F3 R1
F4...
R2
..F4 |
F5 | F6 Al[0]
F5 | F6 Al1]
|
|
F5 | F6 A[255]
| |
F7 | F8 | RFO[0]
Fo | F10 RF1[0]
F7 | F8 | RFO[0]
F9 | F10 RF1[0]
|
|
F7 | F8 | RFO[7]
F9 | F10 RF1[7]
MO MO[0..65535]

DAC Workshop on Universal Verification Methodology (UVM) - V]

erifying Blocks to IP to SOCs and Systems

Class View

 One class per blo

RO reg
R1 reg
R2 reg
A reg
RF rfile

endclass

class B_blk extends uvpggfeg block;

R2:
A[256];
RF[8]:

ovm_ral_mem MO;

— Name, Base address

— Contained registers,

register files, memories

 May be arrays

e Optional: contained fields

A,
r.‘_ AUTOMATION

Make sure names

are different from
base class methods

:

RO RO
F1 F2 F3 R1
F4...
..F4 R2
F5 F6 A[0]
F5 F6 A[1]
||
||
F6 A[255]
F7 F8 | RFO[O]
F9 F10 RF1[0]
F7 F8 | RFO[0]
F9 F10 RF1[0]
|
|
F7 F8 | RFO[7]
F9 F10 RF1[7]
MO MO[0..65535]

DAC Workshop on Universal Verification Methodology (UVM) - \lprifying Blocks to IP to SOCs and Systems

| accellera

API View

e Methods In relevant e o

F2 F3 R1

class instance 7 P

F6 Al0]
F6 A[1]

blk.RO.get_full_name()

N\

F6 A[255]
blk.F4_.read(...) 7/ F7 F8 RFO[0]
F9 F10 RF1[0]
blk_A[1]-write(...) = Fs | RFO[O]
- = F10 RF1[0]
blk_A[255].F5.write(...) -
[
foreach (blk.RF[1]) begin
bIk.RF[i].RO.F7.read(...); = F7 F8 | RFO[7]
end F9 F10 RF1[7]
blk_-MO.read(.--..)
— MO MOI0..65535]

g accellera
o AUTOMATION DAC Workshop on Universal Verification Methodology (UVM) - \Eerifying Blocks to IP to SOCs and Systems

Reading and Writing

o Specify target register by hierarchical
reference in register model

— Compile-time checking

blk.bIK[?2 filel2 14 By-name API
-DIkE2]- regTulel4]-reg- also available

e Use read() and write() method on

— Register

_ blk._blk[2].-regfile[4].reg.fld.read(...);
— Field blk_mem.write(...);
— Memory

'a e
[e ;. AUTOMATION DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce era

L]
® AUTOMATION

Register Sequences

e Seguences accessing registers should be

virtual sequences

— Not associated with a particular sequencer

type
e Contain a reference
to register model

e Access registers in
body() task

class my test seq
extends uvm_sequence;

my dut _model regmodel;
virtual task body();

regmodel .R1.write(...);
regmodel _.R2.read(...);

endtask
endclass

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

accellera

L]
AUTOMATION “

Register Sequences

 Includes pre-defined sequences
— Check reset values
— Toggle & check every bit
— Front-door/back-door accesses
— Memory walking

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce e a

Introspection

* Rich introspection API

I
get _blocks()

| Register File | get—b'OCkO_;l Block poetrapsO

| | Map
N
get parent()
get _maps()
] i1s_i1n_map()
get regfile() get_registers() get offset()
I

: I
| Register =

get parent()
get fields()
get_access()
get_reset()
get_n _bits() Field I—
get_Isp _pos(Q
is_volatile()

' /l
P N . e o
[e ;i AUTOMATION DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce era

Coverage Models

* Register models may contain coverage
models

— Up to the generator

* Not instantiated by default
— Can be large. Instantiate only when needed.

_ _ All coverage
— To enable: models
uvm_reg: :include_coverage(“*” , UVM_CVR_ALL); In all blocks

and registers
* Not collected by default

— To recursively enable e
blk.set coverage(UVM _CVR_ALL);

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce//era

'
f.:‘ AUTOMATION

Customization Opportunities

Spec ﬂ—@

]

Generator

» Register Model » Pre-Build

: Post-Build
Options,
value-add ;

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce/lera

f. . AUTOMATION

There’'s a LOT morel

 DUT Integration

* Multiple interfaces

e Randomization

e Vertical Reuse

e “Offline” access

e User-defined front-door accesses
e Access serialization

* Pipelined accesses

S Mler,
® AUTOMATION “ DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems decelnera

é

®

Workshop Outline

v'10:00am — 10:05am
v'10:05am — 10:45am
v'10:45am — 11:25am
v'11:25am — 11:40am
v'11:40am — 12:20pm
12:20pm — 12:50pm

12:50pm — 1:00pm

AUTOMATION “

Dennis Brophy
Sharon Rosenberg
Tom Fitzpatrick
Break

Janick Bergeron
Ambar Sarkar

All

Welcome
UVM Concepts and Architecture

UVM Sequences and Phasing

UVM TLM2 and Register Package
Putting Together UVM Testbenches

Q&A

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce e a

B
UVM accellera) sysemeio

Putting Together UVM Testbenches

Ambar Sarkar
Paradigm Works, Inc.

'a

A AUTOMATION

Agenda

o (Case studies
— Several UVML1.0 environments deployed
— Currently in production
— Novice to sophisticated teams

o Getting started with UVM is relatively easy

— Basic tasks remain simple

— Were able to use a “prescriptive” approach

— Iteratively developed and scales to any complexity
 Advanced uses

— Unit to system-level

— VIP Stacking/Layering

S Mler,
® AUTOMATION DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems decelnera

Implementing Basic Steps

"" Connect DUT to testbench ‘

v

Once plumbing in ‘ Send clocks and resets ‘

place, a simple \1,
prescriptive approach o

works ‘ Initialize the DUT ‘

‘ Send traffic ‘

Increasing Add checking ‘
sophistication, ¥

but scalable T —— ‘

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce/lera

Example

Packet Input

Read/Write

Channel Engine

P

acket Output 1

P

>

acket Output 2

P

>

acket Output 3

<

"
*o .. ” AUTOMATION “

>

Host Interface

>

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce e a

Example Environment in UVM

test cases ...

unit_tb

Fo=o=s
1 Config :
I_.active s

clk_rst agent

interrupt packet D m—y
scoreboard | ___scoreboard

[x3]

------------------ A T
I Config |
f : active !
active | :

host agent pi agent po agent
N J
= ~ > —

L # |
A/ v

¢ accellera
® AUTOMATION I:l DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

Connect DUT to Testbench

Always use SystemVerilog interface

Use clocking blocks for testbench per

Interface
Use modports for DUT
-~ Pass interface to the environment
N Channel Engine PECketOUtPUtai Use uvm_config_d b
Readlirie - Set (Top level initial block)
) e uvm_config_db#(virtual host if)::set(

null, “my tb.*”,“vif’, vif);

Get (In build phase of the agent)
1IT(Tuvm_config_db#(virtual host 1f)::get(
this, ,"vif",vif))
“uvm_fatal (“NOVIF”, . . .);

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce/era

V?) 4
Y, AUTOMATION

Connect Clock and Resets

Combine clock and reset as agents in one env

class clk rst _env extends uvm_env;
clk _rst cfg cfg; //'" VIP configuration object
//! bring ports out for convenience
uvm_analysis_port #(uvm_transaction) rst_mon_ap out;

//!' Agents In env
clk _agent clk agt;
rst_agent rst_agt;

Define reset as sequences

task clk rst reset pulse _sequence::body();

“uvm_do_with(change_sequence, { level == 0;

hold _cycles == init _cycles;
“uvm_do_with(change_sequence, { level == 1;

hold cycles == assert cycles;
“uvm_do_with(change_sequence, { level == 0;

hold cycles == negate cycles;

'
f.:‘ AUTOMATION

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

accellera

Initializing the DUT

Add transaction definitions for configuration interface (host)
Add driver code for host

Setup host initialization seq
class host_transaction extends uvm_sequence_item;

rand bit[31:0] hi_addr;
rand bit[7:0] hi_wr _data;

task pwr_hi_master _driver::drive_transaction(host transaction trans));

iIT (trans.trans_kind == PWR_HI_WR) begin
intf.hif _address = trans.hi_addr;
intf.hif _data = trans.hi_wr_data;

task my env_init_sequence: :body();
regmodel .R1.write(...);
regmodel .R2.read(...);

& Mler,
[e 5’ AUTOMATION n DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems decelnera

Sending traffic

Similar to initialization

Sequences differ

//!' sequence body.
task pi_sequence::body();
pi_transaction#(. . .) req_xn;
cfg_inst = p_sequencer.cfg;
forever begin
p_sequencer .peek port.peek(req xn);
iIT (Ithis.randomize()) begin
“uvm_fatal ({get_name(), "RNDFLT"}, "Can"t randomize™);
end
“uvm_do _with(this_transaction,
{ trans_kind == req_xn.trans_Kkind;
read _vild delay inside { [0:15] };

1D

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce//era

AUTOMATION “

Checking and Writing Tests

Add checking in the environment
Add monitor code for all components
Connect the scoreboards

class my _env extends uvm_env;
unit_scoreboard#(uvm_transaction, uvm_transaction) sb;

function void my _env::build phase(uvm _phase phase);

sb = unit_scoreboard#(uvm_transaction, uvm_transaction)
s-type_id::create({get name(), " _sb"}, this);

function void pwc_env::connect phase(uvm_phase phase);

pi_mon.mon_ap_ out.connect(sb.post export);
po mon.mon ap out.connect(sb.check export);

Add test-specific checking in the test as needed

& Mler,
® AUTOMATION “ DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems decelnera

Connecting Unit to System Level

Control_Link
:
Control_PHY
——] intf ——
|
JTAG ﬁ@ [_in || CONFIG
DUT
i Tt S
| T N 5 [
PROP_IN [inf | = [igif | & [gt = [gt IPROP_OUT
|7 14 i 4 Fl!
! f
fill /

ENV 1
| intf_|

"
*o . " AUTOMATION “

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce e a

AUTOMATION

Connecting Unit to System Level:
Reuse

e Scoreboarding

 Reuse SB encapsulated within sub-envs [conol_uink |
e Chain the scoreboards . [Coptey o |
. JTAG [o] - —Q—W
* Functional Coverage [me c DUT Coe) CONFIG
* Needed to filter coverage points FJ* (—F ‘—LJL
° Reuse monitors | PROP_IN _\j EJ'FT% Tg g7 JPROP_OUT
* Avoid duplicated instances —_— —'ﬂ

| [} P

|
L]

« Gate Simulations |
» Disable monitors d
» Disable internal scoreboards |
* Regqisters
* Register abstraction reused, but different interfaces used
» Configurations
» Defined separate system configuration
 Top level instantiated sub-env configurations
« Sequences
» Virtual sequencer only at the system level
« Initialization sequences reused from unit-level
« Traffic sequences created from scratch at the system level

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce e a

ENV n

Connecting Unit to System Level:
Prescription

For each sub-env class
Extend sub-env base class
Make all internal components passive
Added sub-env config object to your system config

Declare at system-level:
unit _env_cfg unit _env_cfg _inst;
“uvm_TField object(unit _env_cfg inst, UVM_REFERENCE)

Turn off virtual sequencer at the unit level

& Mler,
[e 5’ AUTOMATION “ DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems decelnera

VIP Stacking/Layering

Converts
upwards

VIP Agent Top Fo-

§ Config

Analysis [

-
L=

lis_active=1
' has_interface=0

Sequencer

<t

SN pESIGN
[.‘ AUTOMATION “

VIP Agent Bottom

Analysis

‘ Config
i is_active=1
i has_interface=1

Sequencer

<

-

Driver

Design Under Test

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce/lera

Converts
Downwards

Summary

e Getting started with UVM was relatively easy
Once initial plumbing in place
Basic tasks remain simple
Were able to use a “prescriptive” approach

» Able to iteratively develop testbench
Scales to any complexity

Unit to system
Stacking of VIPs

* Deployed across projects and simulation vendors
Worked with minor gotchas
No UVM issues found

Some SystemVerilog support issues among vendors
e.g. Inout ports and modports and clocking blocks

a ler
e ;. AUTOMATION 100 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce e a

é

®

Workshop Outline

v'10:00am — 10:05am
v'10:05am — 10:45am
v'10:45am — 11:25am
v'11:25am — 11:40am
v'11:40am — 12:20pm
v'12:20pm — 12:50pm

12:50pm — 1:00pm

AUTOMATION

Dennis Brophy
Sharon Rosenberg
Tom Fitzpatrick
Break

Janick Bergeron
Ambar Sarkar

All

Welcome
UVM Concepts and Architecture

UVM Sequences and Phasing

UVM TLM2 and Register Package
Putting Together UVM Testbenches

Q&A

101 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce e a

L]
AUTOMATION

Questions?

UVM
) -
e Download UVM from www.accellera.org
— Reference Guide
— User Guide

— Reference Implementation
— Discussion Forum

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems acce e a

http://www.accellera.org/�

Accellera at DAC

 Accellera Breakfast at DAC: UVM User Experiences

— An Accellera event sponsored by Cadence, Mentor, and Synopsys
— Tuesday, June 7, 7:00am-8:30am, Room 25AB

e Accellera IP-XACT Seminar

— Anintroduction to IP-XACT, IEEE 1685, Ecosystem and Examples
— Tuesday, June 7t, 2:00pm-4:00pm, Room 26AB

 Birds-Of-A-Feather Meeting

— Soft IP Tagging Standardization Kickoff
— Tuesday, June 7, 7:00 PM-8:30 PM, Room 31AB

éq,
Pe' . AUTOMATION

DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems accellera

Lunch in Room 20D

Show your Workshop Badge

for entry

Thank You

gecellera

48 DAC Workshop on Universal Verification Methodology (UVM) - Verifying Blocks to IP to SOCs and Systems

DESIGN
AUTOMATION

	Universal Verification Methodology (UVM)
	Workshop Outline
	Workshop Outline
	UVM Concepts and Architecture
	UVM Core Capabilities
	The Goal: Automation
	UVM Architecture: �Interface Level Encapsulation
	Agent Standard Configuration
	uvm: Configurable Bus Environment
	UVM Configuration Mechanism
	UVM1.0 Configuration Enhancements (Cont’)
	Virtual Interface Configuration Example
	Where SV Language Stops and UVM Begins�Example: Data Items
	Enabling Data Item Automation
	Data Type Automation
	UVM Messaging Facility
	UVM Sequences
	UVM Tests and Testbenches
	UVM Simulation Phases
	UVM Simulation Phases
	UVM Testbench Example
	Overriding SV Components and Data Objects
	The Test Launching Mechanism
	 Extensions Using Callbacks
	UVM Report Catcher Callback�Goal: Message Manipulation
	Command-line Processor Class
	Command-line Processor Example
	UVM Concepts Summary
	Workshop Outline
	UVM Sequences & Phasing
	Sequences
	Using Sequences And Sequence Items
	Sequence_Item Example
	Basic Sequence-Driver API
	Sequence API Options
	Sequencer and Driver
	Starting a Sequence
	Calling start()
	Sequence Library (Beta)
	Sequence Library
	UVM Phasing
	Phase Synchronization
	Phase Semantics
	uvm_component Basic API
	uvm_component Example
	User-defined Phases
	Separate Domains
	Domains
	Domain Synchronization
	Fully Synchronized Domains
	Sequences and Phases
	Ending Phases
	Ending Phases
	Delaying Phase End
	Ending Phases
	Test Phase Example
	Workshop Outline
	Accellera at DAC
	Workshop Outline
	UVM Transaction Level Modeling (TLM2)
	TLM-1.0
	Why TLM-2.0?
	TLM-2.0 in SV vs SC
	TLM-2.0 Semantics
	Generic Payload Attributes
	Connecting to SystemC
	TLM-2.0 Bridge Between SV & SC
	UVM Register Model
	Overall Architecture
	Specification & Generation
	Physical Interfaces
	Mirror
	Back-door Access
	Programmer’s View
	Class View
	Class View
	API View
	Reading and Writing
	Register Sequences
	Register Sequences
	Introspection
	Coverage Models
	Customization Opportunities
	There’s a LOT more!
	Workshop Outline
	Putting Together UVM Testbenches
	Agenda
	Implementing Basic Steps
	Example
	Example Environment in UVM
	Connect DUT to Testbench
	Connect Clock and Resets
	Initializing the DUT
	Sending traffic
	Checking and Writing Tests
	Connecting Unit to System Level
	Connecting Unit to System Level: Reuse
	Connecting Unit to System Level: Prescription
	VIP Stacking/Layering
	Summary
	Workshop Outline
	Questions?
	Accellera at DAC
	Slide Number 104
	Slide Number 105

