EDA Needs for FPGA

EDPS 2012 April 5th, 2012
Arif Rahman, Karthik Chandrasekar, and Vincent Hool
Outline

- Overview
- Desired EDA flow
- Altera’s Needs
- Future Directions
Times Have Changed

1990s
- Glue Logic
- Heterogeneous Capabilities
 - Flex 6000 30µ process
 - Stratix I 130nm process

2010s
- High Integration/Bandwidth
 - Stratix IV 40nm process
- Hardened Subsystems
 - Stratix V 28nm process
- Cortex-A9 MPCore
 - SoC FPGA 28nm process
Silicon Convergence

Software Programmability

Hardware/Software Programmability

Limited or No Software Programmability

MPU DSP FPGA ASSP ASIC

FPGA Platforms Ideally Positioned for Convergence
Silicon Convergence Laying Foundation for 3D

- Bandwidth expansion
 - High-bandwidth chip-to-chip interface (JEDEC wide IO interface)
 - Optical interconnect

- Additional processing capabilities
 - Memory enhancement

- Product feature set expansion and time-to-market
 - Derivative products

- Energy efficiency

- Integration
 - Fewer components
Altera’s 3D Silicon Vision

- Customer & application driven heterogeneous system integration in package
 - Mix and match silicon IP
 - Integrated design flow
 - Integrated system test methodology
- Maximum system performance
- Minimum system power
- Smallest form factor
- Reduced system cost
Altera’s Product Development Strategy

Product Definition

Manufacturing & Supply Chain

Architecture & Design Infrastructure

Ecosystem & Standards

Design Tools Influence
- Efficiency (productivity & TTM)
- Quality
- Business models
- End user’s experience
Altera and TSMC Jointly Develop World's First Heterogeneous 3D IC Test Vehicle Using CoWoS™ Process

Altera Leveraging TSMC’s CoWoS Manufacturing and Assembly Process for Development of Next-Generation 3D Devices

San Jose, Calif., and Hsinchu, Taiwan, March 22, 2012—Altera Corporation (Nasdaq: ALTR) and TSMC (TWSE: 2330, NYSE: TSM) today announced the joint development of the world’s first heterogeneous 3D IC test vehicle using TSMC’s Chip-on-Wafer-on-Substrate (CoWoS) integration process. Heterogeneous

CoWoS: Chip on Wafer on Substrate
Desired EDA Flow for 3D Integration

Planning & Pathfinding
- 2D monolithic IO/bump/RDL
- 2.5D/3D die stack planning
- RTL resource partitioning for tiers

Physical Design Implementation
- 2D monolithic IO/bump/RDL
- 2.5D/3D die stack configuration
- TSV/u-bump/C4 bump/RDL
- RTL synthesis, P&R, & verification

Performance Validation
- SI/PI/IR/EM
- Thermal & Timing
- Die and package routing density

Verification
- LVS
- DRC

Tape-out
Desired EDA Flow for 3D Integration

Planning & Pathfinding
- 2D monolithic IO/bump/RDL
- 2.5D/3D die stack planning
- RTL resource partitioning for tiers

Physical Design Implementation
- 2D monolithic IO/bump/RDL
- 2.5D/3D die stack configuration
- TSV/u-bump/C4 bump/RDL
- RTL synthesis, P&R, & verification

Performance Validation
- SI/PI/IR/EM
- Thermal & Timing
- Die and package routing density

Verification
- LVS
- DRC

Tape-out

Collaterals
- TSV/u-bump model & library
- MFG rules for die stack planning, yield model, and cost estimates
- Material properties
- Tech file and PDK
- Manufacturing design rules
- Auto RDL (IO-to-bump and chip-to-chip)
- Calibrated models for electrical, thermal, and thermo-mechanical analysis
- System level-timing model
- Infrastructure to handle multiple GDS handling (2-3+)
- Different process nodes with die shrink
- Auto TSV/u-bump layer mapping
- Chip-to-chip mfg rule check
EDA Gaps

<table>
<thead>
<tr>
<th>Focus Areas</th>
<th>Path finding</th>
<th>Tier Design & Verification</th>
<th>Die Stack Verification and Perf. Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Partitioning & Chip-Package Co-Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract Views</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical, Functional, and Timing Verification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connectivity Management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI/PI Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Analysis</td>
<td></td>
<td>Yellow</td>
<td></td>
</tr>
<tr>
<td>Thermo-mechanical Assessment</td>
<td>Yellow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others: data exchange, scalability of database, etc.</td>
<td></td>
<td></td>
<td>Red</td>
</tr>
</tbody>
</table>

- **Green**: Flow exists
- **Yellow**: Existing flows can be adapted
- **Red**: Needs EDA support
Pathfinding for Early Assessment

- Stacking configurations and chip-package interaction
 - System requirements => partitioning => tier requirements
 - Thermal and thermo-mechanical analysis based on macro models (effective material properties)

- 3D product specification
 - Architectural, functional, electrical, and test
 - Structural (intra-tier, inter-tier, and TSV/u-bump/bump planning)
Pathfinding for Early Assessment (Gaps)

- Existing RTL-to-GDS and Die/Packetage co-design flows are too cumbersome for quick and cross-functional what if analysis
Pathfinding for Early Assessment (Gaps)

- Existing RTL-to-GDS and Die/Package co-design flows are too cumbersome for quick and cross-functional what if analysis
Physical Design Implementation: Tier Planning

- Floor planning
 - Application mapping
 - Dependencies among application specific hard/soft IPs
 - Use model

- TSV, u-bump, and bump planning
 - Intra- and inter-tier connectivity and performance optimization

- Manufacturing and keep-out rules
Physical Design Implementation (Gaps)

- DRC and LVS of individual tier and tier-to-tier interface (divide and conquer strategy)
 - Custom ad hoc methods invented on the fly vs. standard approach for tier-to-tier DRC/LVS
 - Challenges with multi-vendor or mixed-technology integration

- Visualization for debugging and FA
 - Navigating through different databases

- Managing database size and process shrinks
System Level Performance Validation (Gaps)

- Multi die power sign off is challenging due to large database sizes
 - Basic EDA infrastructure exists for abstracting die’s (e.g. CPM), but these are yet to evolve completely in mainstream flows

- Multi die STA is extremely challenging in 3D IC while complexity is manageable in 2.5D IC

- Multi die connectivity management for system level LVS
 - More convergence between IC schematics tools and SIP tools desired to bridge the gap between chip and system
System Level Performance Validation (Gaps)

- Chip-to-chip timing closure: SPICE & STA
- Signal integrity analysis
 - TSV and chip-to-chip interconnect coupling and cross talk
 - High speed chip-to-chip signaling loss

- PDN and Thermal
Future Trends
Extension of Existing Standards and Known Good Methods for Die-Stacking

Standard Cells
- Physical, Logical, & Abstract Views
- Timing, Power, & Parasitic
- GDSII, RTL, LEF, LIB, & TLF

IP
- IP-XACT/IEEE Std 1685
 - Hardware information
 - Software views, file lists, protocol standardization
 - Describes the interface to IPs, but not functionality
- In many cases
 - tool centric
 - determined by customers

Stacked IC
- Design & verification of each tier & overall system
- Tier-to-tier interface
 - Electrical
 - Functional
 - Physical
 - Timing
- Data format
 - Verification
 - Thermal
 - Thermo-mechanical
 - Chip-package design
Convergence in Manufacturing

- Die stacking approaches and design rules are converging
 - Flavors integration
 - TSV and micro-bump size and pitch
 - Wafer thickness, BEOL stack for 2.5D, RDL for 2.5D/3D, etc.
 - Standards: http://wiki.sematech.org/3D-Standards

- Enables economies of scale and faster adoption
 - EDA industry needs to be vocal
Die Stacking is an Enabler for System-Level Integration

- FPGAs have been gradually incorporating system-level functions
- Die stacking provides unique business opportunities
 - Moving up in value chain
 - Time-to-market and product differentiations
- EDA tools need to evolve to support higher-level system integration enabled by die-stacking
Thank You
The Dilemma: Flexibility vs. Efficiency

Reconfigurable Co-processors

Alterna at a Glance

- Founded in Silicon Valley, California in 1983
- Industry’s first reprogrammable logic semiconductors
- $1.95 billion in 2010 sales
- 2,600 employees
- Leading supplier of FPGAs, ASICs and CPLDs