Multiple GROUP declarations in ALF

Context: In an ALF timing specification, many-to-many timing arcs may be defined as in the following example, adapted from Fig. 28 of Library Harmonization for Timing, Draft v. 0.3 of 2004-02-23:

```
CELL ManyMany1
{
  GROUP AddressBit { 0 : 2 }
  GROUP DataBit    { 1 : 4 }
  //
  PIN [2:0] Abus { DIRECTION = input; }
  PIN [1:4] Dbus { DIRECTION = output; }
  //
  VECTOR ( 01 Abus[AddressBit] -> 01 Dbus[DataBit] )
  {
    DELAY = 1.0
    {
      FROM { PIN = Abus[AddressBit]; }
      TO   { PIN = Dbus[DataBit]; }
    }
  }
}
```

The arcs in cell ManyMany1 are assigned a rise delay of 1.0 as shown in Fig. 1, with coloring to clarify the internal "fanouts" affected.

Figure 1. ALF many-to-many timing with two GROUPs declared. The arcs from different inputs are color-coded.

Problems:

A. What would be the use of three (or more) GROUP declarations in this context?

B. What might be the meaning, if any, of a "many-many-many" (many³) timing specification?
Solution A: Three or more GROUPs merely mean that there are three or more busses in the cell to be iterated; no special relationship need be implied among the different delays. The example cell ManyMany2 (possibly a sort of demultiplexor) shows the use of three GROUP declarations:

```alfrl
CELL ManyMany2 {
    GROUP DataInBit   { 0 : 3 }
    GROUP DataOutBit1 { 1 : 4 }
    GROUP DataOutBit2 { 0 : 1 }
    //
    PIN [3:0] Din   { DIRECTION = input;  }
    PIN [1:4] Dout1 { DIRECTION = output; }
    PIN [1:0] Dout2 { DIRECTION = output; }
    //
    VECTOR ( 01 Din[DataInBit] -> 01 Dout1[DataOutBit1] )
    { DELAY = 2.0
      { FROM { PIN = Din[DataInBit]; } TO { PIN = Dout1[DataOutBit1]; } }
    }
    VECTOR ( 01 Din[DataInBit] -> 01 Dout2[DataOutBit2] )
    { DELAY = 1.0
      { FROM { PIN = Din[DataInBit]; } TO { PIN = Dout2[DataOutBit2]; } }
    }
}
```

The arcs in cell ManyMany2 are assigned a rise delay either of 1.0 or 2.0, as shown in Fig. 2.

![Figure 2. ALF many-to-many timing with three GROUPs declared. The two different delays are shown in different colors.](image-url)
Solution B.1: A many\(^3\) specification may be interpreted as use of three GROUP declarations in the context of a MATRIX pin. The cell ManyMany3 shows an example of three GROUP declarations in this interpretation of a many\(^3\) specification:

```
CELL ManyMany3
{
    GROUP DataInBit { 2 : 0 }
    GROUP DataOutRow1 { 2 : 1 }
    GROUP DataOutRow2 { 2 : 1 }
    //
    PIN [2:0] BitIn { DIRECTION = input; }  
    //
    VECTOR ( 01 BitIn[DataInBit] -> 01 [DataOutRow1]MxOut[1] )
    {
        DELAY = 1.0
        {
            FROM { PIN = BitIn[DataInBit]; }  
            TO { PIN = [DataOutRow1]MxOut[1]; }  
        }
    }
    {
        DELAY = 2.0
        {
            FROM { PIN = BitIn[DataInBit]; }  
            TO { PIN = [DataOutRow2]MxOut[2]; }  
        }
    }
}
```

Fig. 3 shows the timing arcs in this case. The schematic arrangement of the output nodes is arbitrary.

Figure 3. ALF many-to-many timing with three GROUPs and MATRIX pin declared. The two different delays are shown in different colors.

Solution B.2: A many\(^3\) specification may be interpreted as use of three GROUP declarations in the context of a bidirectional pin. The cell
ManyMany4 shows an example of three GROUP declarations in this interpretation of a many3 specification:

```plaintext
CELL ManyMany4
{
    GROUP InBit   { 0 : 2 }
    GROUP BidirBit { 1 : 3 }
    GROUP OutBit  { 1 : 3 }
    //
    PIN [2:0] Din { DIRECTION = input; }
    PIN [1:3] Dbidir { DIRECTION = both; }
    PIN [3:1] Dout { DIRECTION = output; }
    //
    VECTOR ( 01 Din[InBit] -> 01 Dbidir[BidirBit] )
    {
        DELAY = 1.0
        {
            FROM { PIN =    Din[InBit];    }
            TO   { PIN = Dbidir[BidirBit];  }
        }
    }
    VECTOR ( 01 Dbidir[BidirBit] -> 01 Dout[OutBit] )
    {
        DELAY = 2.0
        {
            FROM { PIN = Dbidir[BidirBit];  }
            TO   { PIN = Dout[OutBit];     }
        }
    }
}
```

Fig. 4 shows the timing arcs in this case. The input and output pins imply the timing directions.

![Figure 4](image.png)

Figure 4. ALF many-to-many timing with three GROUPs and bidirectional intermediate pin declared. The two different delays are shown in different colors.