Specification, Environment, and Test Plan Driven Test Bench Development

By
J.R. Armstrong
Virginia Tech Information Systems Center (VISC)
G. A. Frank
Research Triangle Institute
Presented To
Spring 96 VIUF
March 1, 1996

Easily Updateable Testbenches

- A key to lowering life cycle support cost
- As a system evolves, model testing requirements frequently change
- Model tests are encapsulated in the testbenches
Premise
Testbenches should:

- Be automatically driven by specification requirements
- Accurately reflect the system environment
- Be configured by a test plan

Approach

- Use existing tools as much as possible
- Tool types:
 - Code Generators: develop testbench code from high level, graphics based models (Ilogix-Express VHDL, SPW, Ptolemy, COSSAP)
 - Environmental Data Generators: SPW, xpatch, IRTOOL, and IRAMP data base.
- Required knowledge cuts across traditional engineering boundaries
Two Applications

- SAR: model radar signals
 - transmission, return delay, down converting, deramping, and type conversion
 - one dimensional test case
- Infrared Search and Track: model pixel arrays
 - target image, background clutter, merging, noise injection
 - two dimensional test case

Specification Repository

- High level system block diagram
- Blocks correspond to real system components, underlying VHDL hidden.
- Implemented with a commercial schematic capture tool (Synopsys SGE)
- Specification parameters are symbol attributes
- Parser extracts specification values & feeds them forward to Test Bench Generator
Accurate Environmental Modeling

- Principles:
 - Use tools specific to the physical environment
 - Convert data formats to those required by the test bench
 - Employ strategies for reading and manipulating large arrays of data

IRST Environmental Modeling

- IRTOOL (Arete’)
 - Infrared returns from selected object shapes
 - Format conversion from HDF to ASCII
- IRAMP
 - data base of clutter files maintained by NRL
 - two dimensional images of sea & clouds
- Sensor noise and dropout
- Data loading times: 10 sec
SAR Environmental Modeling

- SPW real number model of transmission, return delay, down converting, deramping, and format conversion
- Superposition of simple object returns
- Also data files from MIT, Lockheed, and xpatch
- Memory storage and read time for large files
Test Plan Interface

- Test plan: a document which organizes system requirements in terms of how the requirements will be tested.
- Requirements divided into groups, a set of tests is allocated to each group.

Library Based Testbench Construction

- For each application (SAR or IRST), the testbench is an unbound, structural architecture.
- Each test is mapped to a VHDL configuration body of that architecture.
- Configuration body specifies which library to component to use and assigns values to generics.
- Test groups correspond to partially specified configurations.
Testbench Component Libraries

- SAR:
 - High level: Genchirp, delay, downconverter, deramper, decimate, merge, noise
 - Low level: chirp, complex tone, complex multiply, delay, complex conjugate, decimate, type conversion
- IRST: target, clutter, sensor, clock

Demonstration SAR Test Plan

- Evaluate the range of a point target
- Evaluate the range of multiple point targets
- Evaluate resolution of SAR MUT.
- Evaluate SAR algorithm noise sensitivity
Testplan 2
4 targets at range bins of 476,869,1131,1787. (Ranges of 7140,7230, 7290,7410 m.)

Testplan 3
Reference target at 7260 m (range bin 1000)
2nd target at 7260.19 m (range bin 10002)
(can be resolved)
A test case of Testplan 4 (with Gaussian noise of $\sigma=9.4$) SNR=-35dB
(when $\sigma>=9.5$, the post filter reports ghost targets)

Demonstration IRST Test Plan

- Simple target detection
- Target detection with platform motion
- Target detection with sensor gain variations across the array
- Target detection with sensor noise
- Target detection with background clutter variation.
Systems Integration Work

- Existing design and application area tools can be used to develop pieces of a testbench.
- Two software systems integrate the pieces:
 - Test Bench Generation System
 - User Interface: TBGUI
 - VHDL Test Simulation Controller
 - User Interface: TBEUI
Modeling Support Tool

- Modeler's Assistant
- Models constructed from Process Model
 Graph and Process Primitive Library
- Provides for process level code reusability
- RASSP processes primitive libraries for
 IRST and SAR
- Tool available through WWW site:

PMG of SAR Sensor (MODAS)
Conclusions

- Effective testbench generation requires:
 - Automatic linkage to the system specification
 - Accurate environmental modeling
 - A test bench component library
 - A test plan interface to configure the test bench structural architecture

- Commercial tool suite used for generation of test bench pieces.

- Software systems developed for test bench generation and simulation control