On the portability of behavioral VHDL-93

Krishnaprasad Thirunarayan
Dept. of Computer Science and Engineering
Wright State University, Dayton, OH-45435
email: tkprasad@cs.wright.edu
phone: (513)-873-5109
fax: (513)-873-5133

Robert Ewing
Wright Laboratory (Avionics Division)
Wright Patterson AFB, Dayton, OH-45433.
email: rewing@el.wpafb.af.mil

Abstract

Goossens defined a structural operational semantics for a subset of VHDL-87 and proved that the parallelism present in VHDL is benign. We extend this work to include shared variables in VHDL-93 that changes the underlying semantic model. In the presence of shared variables, non-deterministic execution of VHDL-93 processes destroys the unique meaning property. We identify and characterize a class of portable VHDL-93 descriptions for which unique meaning property can be salvaged.

1 Introduction

VHDL has been designed to facilitate specification, documentation, communication and formal manipulation of hardware designs at various levels of abstraction [1]. The semantics of VHDL-93 are given in English prose in [7]. The goal of developing formal semantics is to provide a complete and unambiguous specification of the language. Adherence to this standard will contribute significantly to the sharing, portability and integration of various applications and computer-aided design tools; to the implementation of language processors; and for formal reasoning about VHDL descriptions. Furthermore, this exercise enhances our understanding of the various VHDL-93 constructs/features.

There have been a number of proposals for a formal semantics of VHDL, almost all of them dealing with subsets of VHDL-87 [2, 3, 4, 8, 9]. In particular, Goossens [4] defines a structural operational semantics [5] for a subset of VHDL-87 that includes almost all the fundamental behavioral constructs in a single VHDL-87 entity. Börger et al (Chapter 4, [3]) provide a formal definition of VHDL-93 features using EA-machines. However, they do not formally prove properties of their semantics.
In this paper we build on Goossens work and investigate the semantics for a subset of behavioral VHDL-93 that includes shared variables, not present in VHDL-87. Shared variables fundamentally change the underlying semantic model of VHDL. In particular, the unique meaning (monogenicity) property proved for the subset of VHDL-87 in [4] no longer holds in the presence of shared variables because of non-deterministic and asynchronous nature of process executions. However, we characterize a class of portable VHDL-93 descriptions for which the unique meaning property can be salvaged. That is, we specify VHDL-93 descriptions that will always yield same results when interpreted by different simulators or by the same simulator on different runs. The goal is to provide an approximate but formal interpretation of the following statement in Section 4.3.1.3 in the VHDL LRM [7].

A description is erroneous if it depends on whether or how an implementation sequentializes access to shared variables.

Our formalization specifies additional run-time machinery that can potentially be incorporated in a VHDL-93 simulator to flag VHDL-93 descriptions that cannot be “safely” ported.

The rest of this paper is organized as follows: Section 2 presents the abstract syntax of the VHDL-93 subset and Section 4 sketches its semantics. (Due to space limitation, formal specification of the semantics is omitted. This is developed elsewhere by extending the work of Goossens[4].) Our primary emphasis here is on the changes to the semantics in [4] resulting from the introduction of shared variables. We explore the causes of non-portability and then formally define what we mean by portable VHDL-93 descriptions. Section 3 illustrates the portability problem, while Section 5 proves interesting properties of portable descriptions. Section 6 presents some conclusions.

2 Abstract Syntax of VHDL-93 subset

The abstract syntax of the core subset of behavioral VHDL-93 is shown below.

- Syntactic Categories

\[
\begin{align*}
pgm & \in Programs & \text{proc} & \in Processes \\
p & \in NonPostponedProcesses & pp & \in PostponedProcesses \\
ss & \in SequentialStatements(= SS) & e & \in Expressions(= Expr) \\
s & \in Signals(= Sig) & S & \in SetsOfSignals \\
x & \in Variables(= Var) & sz & \in SharedVariables(= SVar) \\
v & \in Values(= Val)
\end{align*}
\]

- Definitions

\[
\begin{align*}
\text{pgm} & ::= \|_{i \in I} \text{proc}_i \\
\text{proc}_i & ::= p_i \mid \text{postponed } pp_i \\
p_i & ::= \text{while } \text{true } \text{do } ss_i \\
pp_i & ::= \text{while } \text{true } \text{do } ss_i \\
ss_i & ::= \text{null } \mid x := e_i \mid ss_i := e_i \mid s <= e_i \text{ after } e_i \\
 & \mid ss_i ; ss_i \mid \text{wait on } S \text{ for } e_i \text{ until } e_i \\
 & \mid \text{while } e_i \text{ do } ss_i \mid \text{if } e_i \text{ then } ss_i \text{ else } ss_i \\
e_i & ::= \text{null } \mid v \mid x \mid ss_i \mid s \\
 & \mid e_i \text{ bop } e_i \mid \text{uop } e_i \mid s'\text{delayed}(e_i)
\end{align*}
\]
The corresponding VHDL-93 concrete syntax should be obvious with the exception of the process statement:
\[
(\text{while } \text{true do } ss; \text{ end process } i;)
\]

A program in this VHDL-93 subset can be viewed as a fully elaborated behavioral VHDL-93 description [7]. It is a collection of processes communicating with each other through signals and shared variables. \(\parallel \) is the parallel composition operator and \(I \) is a finite index set. As mentioned earlier, a VHDL-93 description is portable if one can associate a unique meaning with it. To characterize portable VHDL-93 descriptions, we associate the identity of a process with each occurrence of a shared variable. (See Section 4.1.1 for concrete examples.) So we have tagged the meta-variables \(\text{proc}, p, pp, ss, \) and \(e \) with subscript \(i \) representing the index of the associated process \(\text{proc}_i \). (Alternatively, this can be easily specified through the static semantics.)

The set of processes has been partitioned into postponed processes \((pp) \) and non-postponed processes \((p) \). The predicate \textit{postponed?} is true of all postponed-process indices. A process is a sequence of statements that can be executed repeatedly. The statements include assignments, wait statements, and control statements. The expression syntax is standard and includes logical and arithmetic expressions.

With regards to the static semantics, we assume that the VHDL-93 descriptions are \textit{well-typed}, and all the signals with multiple drivers have a suitable resolution function associated with them. For instance, the expression \(e \) in \textit{for } \(e \text{ } \) is assumed to be of integer type, while that in \textit{until } \(e \text{ } \) is of boolean type.

We now explore the semantic complications caused by the introduction of shared variables into VHDL.

3 Shared Variables and Non-Portability

Intuitively, a VHDL-93 description is \textit{portable} if it assigns the same "observable" values to all (shared) variables and signals. The following examples illustrate the causes of non-portability and motivate restrictions required to guarantee portability of VHDL-93 descriptions. We assume that all variables/shared variables of integer type are initially \(0 \).

\begin{example}
\textbf{Example 1.} The following VHDL description is not portable as the value of \(sz \) after \(t \text{-ns } (> 0) \) can be either \(1 \) or \(2 \) (due to inherent nondeterminism).
\[
\text{while true do } (sz := 1; \text{ wait for } 1 \text{ ns};)
\parallel
\text{while true do } (sz := 2; \text{ wait for } 1 \text{ ns};)
\]
\end{example}

\begin{example}
\textbf{Example 2.} Similarly, the following description is not portable as the value of \(z \) after \(t \text{-ns} \) can be either \(t \) or \(t + 1 \).
\[
\text{while true do } (y := y + 1; sz := y; \text{ wait for } 1 \text{ ns};)
\parallel
\text{while true do } (z := sz; \text{ wait for } 1 \text{ ns};)
\]
\end{example}

\begin{example}
\textbf{Example 3.} On the contrary, the following description is portable because, in each unit-time-interval, the shared variable is either only read simultaneously by both processes, or is accessed in read/write mode only by the second process. The value of \(sz \) after \(t \text{-ns} \) is \(\lfloor \frac{t}{2} \rfloor \).
\[
\text{while true do } (y := sz; \text{ wait for } 2 \text{ ns};)
\parallel
\text{while true do } (z := sz; \text{ wait for } 1 \text{ ns}; sz := sz + 1; \text{ wait for } 1 \text{ ns};)
\]
\end{example}
In what follows, we sketch an approach to the structural operational semantics for the VHDL-93 subset along the lines of [4].

4 An Approach to Operational Semantics

Let \(Val, Sig, Var, SVar, Expr, \) and \(SS\) denote the domains of values, signals, variables, shared variables, expressions and sequential statements respectively.

4.1 Semantic Entities

The state of a computation is captured by the history of values of each signal, the value bound to each variable and each shared variable, and the “activity” status of each postponed process.

Each process has a local store \(L\) that models the persistent value bindings of the variables and the signals. Without loss of generality, we assume that each variable implicitly holds an integer or a boolean value. \(Val = \mathbb{Z} \cup \mathbb{B} \), where \(\mathbb{Z} \) stands for the set of integers and \(\mathbb{B} \) for the set of booleans.

Each signal \(s \) is interpreted as a partial function \(f : \mathbb{Z} \rightarrow Val \) satisfying the following constraints [4]: for \(n < 0 \), \(f(n) \) is the value of the signal \(n \) time steps ago; \(f(0) \) is the current value of the signal \(s \); for \(n \geq 0 \), \(f(n+1) \) is the projected value for \(n \) time steps into future. \(f(1) \) contains the value scheduled for the next delta cycle. \(f \) contains at least \((-\infty, i) \) and \((0, v) \) for initial value \(i \) and current value \(v \) of \(s \). Note that only for \(n \geq 0 \) is \(((n+1), \perp) \) a valid pair in \(f \) and encodes a null transaction for time \(n \).

The domain \(S\) models the value bindings of the shared variables. To guarantee portability of VHDL-93 descriptions, access to shared variables must be restricted. In any simulation cycle, all processes may read a shared variable, or exactly one process may read and write a shared variable, without jeopardizing portability. However, one cannot permit arbitrary reads and writes across processes. To characterize portable VHDL-93 descriptions, we associate with each shared variable, its current value, the type of last access (read/write) and the index of the process accessing it. The distinguished constants \(\perp \) and \(\top \) denote undefined and all respectively. The constant \(\perp \) represents the case where a shared variable has not yet been accessed in the current cycle, while the constant \(\top \) represents the case where all processes are permitted to access the shared variable.

It is also necessary to remember whether or not a postponed process is active, ready to be run at the end of the last delta cycle for the current time. Thus, the domain \(PP\) is defined as a subset of (postponed) process indices \(I \).

Thus, the signatures of the semantic domains are:

\[
L = (\text{Var} \rightarrow Val) \times (\text{Sig} \rightarrow \mathcal{P} (\mathbb{Z} \times Val))
\]

\[
S = (\text{SVar} \rightarrow (Val \times (\mathbb{I} \cup \{ \perp, \top \}) \times \mathcal{P} (\{ r, w \})))
\]

\[
PP = \mathcal{P} (I)
\]

where, \(\mathcal{P} \) stands for the powerset operator.

4.1.1 Handling of Shared Variables for Portability

We now propose a scheme to ensure that the value bound to each shared variable in every cycle is well-defined (unique) in spite of the non-deterministic execution of the processes. For this purpose, we tag each shared variable with two additional pieces of information — the index of the process accessing it and the type of last access (read/write). In each simulation cycle, if only one process
accesses a shared variable, the final value of the shared variable is uniquely determined (because of the sequential execution of the statements in a process). Similarly, if a shared variable is only read by some/all processes, the value of the shared variable remains unchanged. However, if multiple processes try to access a shared variable while one of them is writing into it in the same cycle, there is potential for ambiguity in the final value of the shared variable. One can capture the constraints for portability by defining a suitable transition function on the “states” of the shared variable as explained below:

- At the beginning of each simulation cycle, the state of a shared variable can be denoted by \(\langle v, i, \{r\} \rangle \), where \(\emptyset \) signifies that the variable has not yet been accessed. Assume that a read by process \(i \) is denoted by \(i \), while the action of writing \(u \) is denoted by \(\langle i, u \rangle \).

 If process \(i \) issues a read, the state of the shared variable changes to \(\langle v, i, \{r\} \rangle \). The corresponding state transition is written as: \(\langle v, i, \{r\} \rangle \xrightarrow{i} \langle v, i, \{r\} \rangle \).

 If process \(i \) now writes a \(u \), the state of the shared variable changes to \(\langle u, i, \{r, w\} \rangle \) and the state transition is written as: \(\langle v, i, \{r\} \rangle \xrightarrow{\langle i, u \rangle} \langle u, i, \{r, w\} \rangle \).

- If the current state of the shared variable is \(\langle v, i, \{r\} \rangle \) and process \(j \) issues a read, all subsequent accesses to the shared variable can only be reads, to ensure portability. This is because, a subsequent write to the shared variable by a process \(i \) (resp. \(j \)) can potentially affect the value of the shared variable read by the remaining statements in process \(j \) (resp. \(i \)). To capture this restriction, the following state transitions are defined, where \(T \) means any process:

 \(\langle v, i, \{r\} \rangle \xrightarrow{j} \langle v, T, \{r\} \rangle \) and \(\langle v, T, \{r\} \rangle \xrightarrow{\langle i, u \rangle} \langle u, T, \{r, w\} \rangle \).

 The state \(\langle v, T, \{r\} \rangle \) should permit only reads by any process, while the state \(\langle v, T, \{r, w\} \rangle \) signifies a non-portable computation. This is mirrored by the following transitions:

 \(\langle v, T, \{r\} \rangle \xrightarrow{\langle i, u \rangle} \langle u, T, \{r, w\} \rangle \).

 \(\langle v, T, \{r, w\} \rangle \xrightarrow{\langle i, u \rangle} \langle u, T, \{r, w\} \rangle \).

- Now consider all possible transitions from the state \(\langle v, i, \{w\} \rangle \).

 If process \(i \) issues a read, then only \(i \) should be allowed subsequent access, for portability. However, if process \(j \) issues a read, the code is not portable, because there is potential for ambiguity in the value that process \(j \) reads. In particular, it could be \(v \) or the value the shared variable had prior to \(v \).

 \(\langle v, i, \{w\} \rangle \xrightarrow{i} \langle v, i, \{r, w\} \rangle \) and \(\langle v, i, \{w\} \rangle \xrightarrow{j} \langle v, T, \{r, w\} \rangle \) if \(i \neq j \).

 If process \(i \) writes \(v \), there is no change in the state. However, if process \(i \) writes \(u \), then process \(i \) should have exclusive access, for portability.

 \(\langle v, i, \{w\} \rangle \xrightarrow{\langle i, u \rangle} \langle v, i, \{w\} \rangle \) and \(\langle v, i, \{w\} \rangle \xrightarrow{\langle i, u \rangle} \langle u, i, \{r, w\} \rangle \) if \(u \neq v \).

 If process \(j \) writes \(v \), all processes can be permitted to write the same value, for portability. However, if process \(j \) writes \(u \), then the code is not portable because the final value of the shared variable can be either \(v \) or \(u \) depending on how the processes are scheduled.

 \(\langle v, i, \{w\} \rangle \xrightarrow{\langle j, u \rangle} \langle v, T, \{w\} \rangle \) if \(i \neq j \).

 \(\langle v, i, \{w\} \rangle \xrightarrow{\langle j, u \rangle} \langle u, T, \{r, w\} \rangle \) if \(i \neq j \land u \neq v \).
We crystallize and complete the above description by formally defining a deterministic finite state automaton that keeps track of accesses to a shared variable, to distinguish access-sequences that are portable from those that are potentially non-portable.

A deterministic finite-state automaton (DFA) is a 5-tuple \([Q, \Omega, \Gamma, F, q_0]\), where \(Q\) is the set of possible states, \(\Omega\) is the alphabet, \(\Gamma\) is the transition function \(\Gamma : Q \times \Omega \to Q\), \(F\) is the set of accepting states \(\subseteq Q\), and \(q_0\) is the initial state \(\in Q\). We customize these sets for the problem at hand as follows:

- \(Q = Val \times (I \cup \{\bot, \top\}) \times P(\{r, w\})\).

Recall that the shared variable value is tagged with the index of the process that accesses it and the type of last/allowed access. The possible types of accesses are: \(\emptyset\), \(\{r\}\), \(\{w\}\) and \(\{r, w\}\) representing no access yet, read-access, write-access, and read/write-access respectively. The \(\bot\) value for the index signifies that no process has yet accessed the shared variable in the given simulation cycle, while the \(\top\) value means that all processes are allowed access.

Note that \(I\) is finite, but \(Val\) is infinite. However, for our purposes, we make the simplifying but realistic assumption that \(Val\) is arbitrarily large but finite. Overflow will trigger a run-time error.

- \(\Omega = I \cup (I \times Val)\).

The state of a shared variable changes when it is accessed. A read-action is represented by the index of the process from which the read has been issued, while a write-action is represented by a pair consisting of the value to be written and the index of the process from which the write has been issued.

- The deterministic transition function \(\Gamma\) is given below:

\[
\begin{align*}
\langle v, \bot, \emptyset \rangle \xrightarrow{\{r\}} \langle v, i, \{r\} \rangle & \quad \langle v, \bot, \emptyset \rangle \xrightarrow{\{w\}} \langle u, i, \{w\} \rangle \\
\langle v, i, \{r\} \rangle \xrightarrow{\{r\}} \langle v, i, \{r\} \rangle & \quad \langle v, i, \{r\} \rangle \xrightarrow{\{\bot\}} \langle v, T, \{r\} \rangle \quad \text{if } i \neq j \\
\langle v, i, \{r\} \rangle \xrightarrow{\{w\}} \langle u, i, \{r, w\} \rangle & \quad \langle v, i, \{r\} \rangle \xrightarrow{\{\top\}} \langle u, T, \{r, w\} \rangle \quad \text{if } i \neq j \\
\langle v, i, \{w\} \rangle \xrightarrow{\{r\}} \langle v, i, \{r, w\} \rangle & \quad \langle v, i, \{w\} \rangle \xrightarrow{\{\bot\}} \langle v, T, \{r, w\} \rangle \quad \text{if } i \neq j \\
\langle v, i, \{w\} \rangle \xrightarrow{\{\top\}} \langle v, i, \{w\} \rangle & \quad \langle v, i, \{w\} \rangle \xrightarrow{\{\bot\}} \langle u, i, \{r, w\} \rangle \quad \text{if } u \neq v \\
\langle v, i, \{w\} \rangle \xrightarrow{\{\top\}} \langle v, T, \{w\} \rangle & \quad \text{if } i \neq j \\
\langle v, i, \{w\} \rangle \xrightarrow{\{\bot\}} \langle v, T, \{w\} \rangle & \quad \langle v, i, \{w\} \rangle \xrightarrow{\{\top\}} \langle u, T, \{w\} \rangle \quad \text{if } i \neq j \\
\langle v, T, \{r\} \rangle \xrightarrow{\{r\}} \langle v, T, \{r\} \rangle & \quad \langle v, T, \{r\} \rangle \xrightarrow{\{\bot\}} \langle u, T, \{r\} \rangle \\
\langle v, T, \{w\} \rangle \xrightarrow{\{r\}} \langle v, T, \{w\} \rangle & \quad \langle v, T, \{w\} \rangle \xrightarrow{\{\bot\}} \langle u, T, \{w\} \rangle \quad \text{if } u \neq v \\
\langle v, T, \{r, w\} \rangle \xrightarrow{\{r\}} \langle v, T, \{r, w\} \rangle & \quad \langle v, T, \{r, w\} \rangle \xrightarrow{\{\bot\}} \langle u, T, \{r, w\} \rangle \quad \text{if } u \neq v \\
\langle v, T, \{r, w\} \rangle \xrightarrow{\{\bot\}} \langle v, T, \{r, w\} \rangle & \quad \langle v, T, \{r, w\} \rangle \xrightarrow{\{\top\}} \langle u, T, \{r, w\} \rangle
\end{align*}
\]

- \(F = (Val \times \{\bot\} \times \emptyset) \cup (Val \times I \times \{\{r\}, \{w\}, \{r, w\}\}) \cup (Val \times \{\top\} \times \{\{r\}, \{w\}\})\)

Informally, the set of accepting states characterizes the safe sequences of reads and writes for portability.
• \(q_0 = (v, \perp, \emptyset) \).

\(v \) is the value of the shared variable at the beginning of the first simulation cycle for the current unit-interval. The index \(\perp \) and the type of access \(\emptyset \) signify that the shared variable has not yet been accessed.

The states in \(\langle \text{Val} \times \{\perp\} \times \{(r), \{w\}, \{r, w\}\} \rangle \cup \langle \text{Val} \times \{I\} \times \{\emptyset\} \rangle \cup \langle \text{Val} \times \{\top\} \times \{\emptyset\} \rangle \) are unreachable from \(q_0 \), and those in \(\text{Val} \times \{T\} \times \{(r, w)\} \) are the dead states.

Lemma 4.1 Every string (of read/write actions) in the language of the DFA satisfies one of the following properties:

(a) Every action in the string is a read action, that is, it is in \(I \). Furthermore, the value of the shared variable remains unchanged.

(b) Every action in the string contains the same index \(i \), that is, it is either \(i \) or \((i, \nu_a) \). Furthermore, the final value of the shared variable is the last value written.

(c) Every action in the string is a write action with the same value component, that is, it is in \(I \times \{(v)\} \). Furthermore, the final value of the shared variable is the value written.

Proof Sketch: It is easy to see the result by starting from the final states and tracing all the relevant transitions in reverse.

Lemma 4.1 lays the foundation for defining portability. Let \(\text{Size}(rs) \) return the size of the set of indices in the read sequence \(rs \). \((\text{size}(ijklji) = 3)\)

Lemma 4.2 Let \(q, q_1, q_2 \in Q \), and \(rs_1, rs_2 \in I^* \) be two sequences of reads that are permutations of each other. Then, the relation \((q \not< rs_1) \land q \not> rs_2 \Rightarrow q_1 = q_2 \) holds.

Proof: We consider two cases: (a) \(\text{Size}(rs_1) \leq 1 \). Trivial. (b) \(\text{Size}(rs_1) > 1 \). Follows straightforwardly from the definition of the transition function.

4.1.2 Advancing time

A program is evaluated with respect to the global structure \(\text{Store} \) defined as follows:

\[
\text{Store} = \mathcal{P}(\text{LStore}) \times \text{SStore} \times \text{PPStat}
\]

\[
\sigma, \sigma_i \in \text{LStore} \quad \Sigma, \Sigma_i \in \mathcal{P}(\text{LStore})
\]

\[
\psi \in \text{SStore} \quad \xi \in \text{PPStat}
\]

Two functions — \(T, U : \text{Store} \mapsto \text{Store} \) — are defined to advance time and delta time respectively [4]. The function \(T \) transforms a \(\text{Store} \) as follows:

- The (local) variables are unchanged: \(T(\sigma_i)(x) = \sigma_i(x) \).

- For signals: \(T(\sigma_i)(s) = \{(n - 1, v) \mid (n, v) \in \sigma_i(s)\} \cup \{(0, \sigma_i(s)(2) \text{ else } \sigma_i(s)(0))\} \).

 Here \(x \text{ else } y \) means "if \(x \) is defined then \(x \) else \(y \)". Note that there is an error in [4] since it has \(1 \) in place of \(2 \), and as shown later, \(\sigma_i(s)(1) \) is always undefined when \(T \) is applied.

- For shared variables: \(T(\psi)(sx) = (v, \perp, \emptyset) \), where \(\psi(sx) = (v, i, a) \).
• For the status of the postponed-processes: $T(\xi) = \emptyset$.

A signal s is active if $\exists \sigma_i \in \Sigma_I, v \in Val_I : (1, v) \in \sigma_i(s)$. A process can resume if it is sensitive to an active signal or it has been timed-out.

The function U effects only the value of the active signals, the state of the shared variable and the status of the postponed processes. It leaves unchanged the values of variables, shared variables, and inactive signals.

• For shared variables: $U(\psi)(sx) = \langle v, \bot, \emptyset \rangle$, where $\psi(sx) = \langle v, i, a \rangle$.

• For active signals s, the current value is replaced by $r_s \in Val_l$, obtained through the signal resolution function f_s applied to the driving values of the signal [4]:

$$r_s = f_s(I : \{v_i \mid i \in I \land (1, v_i) \in \sigma_i(s) \land v_i \neq \text{null}\})$$

$$U(\sigma_i(s)) = (\sigma_i(s) \setminus \{(0, \sigma_i(s)(0)), (1, \sigma_i(s)(1))\}) \cup \{(0, r_s)\}$$

Here, $\{,\}$ denotes a multiset. f_s is assumed to be a commutative resolution function. null signifies disconnection. Note that inactive signals do not participate in determining the final resolved value.

The signatures of the relevant semantic functions are:

- $E : Expr \rightarrow LStore \times SStore \rightarrow Val_I \times SStore$
- $\rightarrow_{ss} : (LStore \times SStore) \rightarrow (LStore \times SStore)$
- $\rightarrow_{pgm} : (Store \times SSt) \rightarrow (Store \times SSt)$

An expression is evaluated with respect to the local/shared store and it returns a value and a (possibly modified) shared store. A program (resp. statement) and a store evolve into a new program (resp. statement) and an (resp. unique) updated store.

A detailed specification of the semantics of expressions, statements and programs is skipped, due to space constraints.

5 Properties of the Operational Semantics

We are now ready to formally define the notion of *portability*. Let \rightarrow^{*}_{pgm} be the reflexive transitive closure of \rightarrow_{pgm}, and $(Q, \Omega, \Gamma, F, q_0)$ be the DFA described in Section 4.1.1.

Definition 5.1 A program $(||_I$ while true do $ss_i)$ is a portable VHDL-93 description if, for every transition of the form

$$(||_I (\sigma_i, \psi, \xi, \psi^i, sss_i)$$

we have $\forall sx \in SVar : (\psi(sx) = q_0) \Rightarrow \psi'(sx) \in F$.

From Lemma 4.1, this implies permitting arbitrary interleaving of statement-executions as long as each shared variable is accessed either by all processes in read-mode, or by all processes in write-mode and the same value is written in, or by the same process in read/write mode, between two successive synchronization points.

We now state interesting properties about the semantics of the portable VHDL-93 descriptions, to gain deeper understanding and to increase our confidence in the formalization of the semantics. Formal proofs are skipped due to space limitations.
Theorem 5.1 A process that does not contain a wait-statement loops forever.

Theorem 5.2 The semantics of expressions E (resp. statements \rightarrow_s) is deterministic.

Theorem 5.3 The statement $\text{wait on } \emptyset$ for ∞ until true; causes the enclosing process to suspend forever.

Theorem 5.4 The values bound to variables, shared variables, and signals of the processes of a portable VHDL-93 description sampled when all of them are waiting are unique.

Theorem 5.5 The portability condition given in Definition 5.1 is sufficient but not necessary for VHDL-93 descriptions to have a unique meaning.

Proof: There exist trivial descriptions such as $|| _1 \text{while true do } sz := sz; \text{ that have a unique meaning, but violate the portability definition.}$

Theorem 5.6 The portability condition given in Definition 5.1 is non-local.

Proof: Consider the two processes PS (with $sflag$ initially true)

$$\text{while true do (if sflag then sz := 1 else sz := 0; wait for 2 ns;)}$$

executing in parallel with each of the following processes:

$$\text{P1: while true do (wait for 1 ns; sflag := true; wait for 1 ns;)}$$

$$\text{P2: while true do (wait for 1 ns; sflag := false; wait for 1 ns;)}$$

Running with P1, PS is portable; while running with P2, PS is not portable. As a consequence of this non-locality, it is not possible to incrementally check VHDL-93 descriptions for portability.

Theorem 5.7 Given a VHDL-93 description, it is not possible to determine statically (that is, at compile time) whether or not it is portable.

Proof Sketch: If the VHDL-93 description contains a "free" shared variable whose value is not known at compile-time, then it is obvious that portability check cannot be made statically. The program PS and the shared variable $sflag$ given in the proof of Theorem 5.6 exemplify this situation.

Interestingly, the result holds even when all the variables, shared variables and signals are completely defined. The test for portability can be reduced to determining whether or not two programs compute the same function.

$$\text{while true do (... sz := Func1(z1) ...; z1 := z1 + 1; wait for 1 ns;)}$$

$$\text{while true do (... sz := Func2(z2) ...; z2 := z2 + 1; wait for 1 ns;)}$$

Let $z1$ and $z2$ be initially 0; Func1 and Func2 abbreviate the code that computes sz from $z1$ and $z2$. The above program is portable if and only if the value written into sz by the two processes in every step is identical. That is, Func1 and Func2 stand for the same function. However, since equivalence problem for Turing-complete languages is undecidable, the portability cannot be determined at compile-time.

In order to detect lack of portability at run-time, the simulator can be augmented with additional information specified in the DFA described in Section 4.1.1. One can in fact view this as a new implementation of the abstract data type shared variable.
6 Conclusions

The designers of VHDL-93 extended VHDL-87 by introducing shared variables and postponed processes into the language. Furthermore, VHDL-93 LRM stipulates that the VHDL-93 descriptions that generate different behaviors on different simulators are erroneous. In this paper, we explored causes of non-portability through examples and later proposed sufficient conditions for a VHDL-93 behavioral description with shared variables to be have unique meaning. We also specified how a simulator can be augmented with additional information to detect and flag non-portability. We then stated some basic properties about VHDL-93 descriptions, and showed that test for portability is neither local nor static.

References