A Hybrid Design Methodology of LSIs and Multichip Module using VHDL

Yasukazu Murata, Hatsuho Murata * and Hiroki Yokohama **

Hardware Engineering Division, NEC Communication Systems Kyushu, Ltd.
10-1, kamigofuku, Hakata, Fukuoka, 812, JAPAN
* 1st Laboratory, C&C Product Technologies Development Laboratories, NEC corporation
** Design Engineering Department, Switching Division, NEC corporation
1131, Hinode, Abiko, CHIBA, 270-11, JAPAN

Abstract

This presentation describes a hybrid design methodology of LSIs and MCM (Multichip Module) using VHDL as an example of NEC's experiences.

This hybrid design methodology applies VHDL design methods only to function level design, and traditional design methods to gate level design. LSIs which are mentioned here are custom LSIs, and timing and function libraries for VHDL simulator are not supported yet. Further, it is very difficult to synthesize their gate level circuits, because high performances are required at about 200MHz clock. Using this hybrid design method, these LSIs on MCM were developed in a short period.

Three kinds of LSI and MCM were developed using VHDL concurrently. MCM is composed of 3 kinds of LSIs, 14 LSIs in total. LSIs are described as behavioral VHDL model, and a VHDL structural model of MCM corresponds to more than 1300K gates level circuits.

This presentation will highlight our CAD environment and experiences to develop these LSIs and MCM.

In conclusion, we will show our plan for developing methodologies using VHDL and requirements for EDA vendor.
A Hybrid Design Methodology of LSIs and Multichip Module using VHDL

October 11, 1993

Yasukazu Murata

Hardware Engineering Division,
NEC Communication Systems Kyushu, Ltd.
10-1 Kamigofuku, Hakata, FUKUOKA, 812, JAPAN

TEL +81 92 262 2602
FAX +81 92 262 2606

e-mail yasu@ptl.abk.nec.co.jp

Outline

1) Hybrid design methodology
 For developing LSI and Multichip Module (MCM)
 - An example of NEC's experiences

2) Requests for EDA vendors
Hybrid Design Methodology

1) Design methodology using both VHDL design environment and traditional design environment.

2) Specifications of functions and interfaces are verified in VHDL design environment.

3) Circuit diagrams which are designed manually and by logic synthesis tools are inspected in traditional design environment.

Why Hybrid Design Methodology?

1) NEC VHDL standard libraries are not supported.

 It is easy to develop our own VHDL libraries, but these libraries don't apply to all design process of NEC. It is necessary to develop NEC standard libraries, function libraries and timing libraries.

2) Concerning timing inspection, traditional design environment is better than VHDL design environment. (e.g. backannotation).

3) Applying VHDL to upstream activities of top-down design is important.

 Efficiencies can be improved by applying VHDL to behavioral level even if VHDL is not applied to RTL and gate level.
Design Flow

1) LSI specifications were verified by VHDL behavioral model.
2) Functions and timings of LSI which were designed manually were verified by traditional gate level simulator.
3) The test bench generated 3 kinds of test pattern for LSI verification concurrently.
4) Structure descriptions of MCM were converted by support tool.
5) Structure descriptions of MCM were converted to netlists for layout tool.
6) Three kinds of LSI and MCM were developed at the same time.
Why was not logic synthesis tool used?

1) VHDL gives a lot of merits to engineers even if logic synthesis is not used.
2) Concerning high speed circuits, VHDL description level for logic synthesis is low. These descriptions are equal to manually designed circuits. No merit to use logic synthesis tool.
3) VHDL libraries for custom LSI were not supported.
4) In circuit diagrams which are synthesized by logic synthesis tool, layout of parts is too poor to understand these circuits.
5) There was no engineer to have skills to use logic synthesis tool then, because engineer must get skills to use it through trial and error.
Generating Test Patterns from Testbench

Easy to generate test patterns for LSI verification

Traditional design method:

Engineers spent much time to draw waveforms.

Hybrid design method:

Three kinds of LSI test pattern are generated from testbench concurrently.

Productivity

traditional method : 1
this method : more than 3
1) MCM structure descriptions were verified by testbench.

2) MCM netlist for layout tool was converted from MCM structure descriptions automatically.

3) LSI has 3 kinds of interface: ECL, TTL, and CMOS.
 These interfaces were declared, each to check signal connections.

4) Signal names show the connections between terminals of LSI and MCM.
 LSI_A(123)_LSI_B(098)_D00
Integration of LSI

<table>
<thead>
<tr>
<th></th>
<th>Number of Logic Gates</th>
<th>Memory Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSI-A</td>
<td>113K</td>
<td></td>
</tr>
<tr>
<td>LSI-B</td>
<td>90K</td>
<td>114Kbit</td>
</tr>
<tr>
<td>LSI-C</td>
<td>100K</td>
<td>43Kbit</td>
</tr>
</tbody>
</table>

Note:
- LSI Package: 320 pin Butt Lead
- Clock Speed: max 200 MHz

Integration of MCM

<table>
<thead>
<tr>
<th></th>
<th>Number of LSI</th>
<th>Number of Logic Gates</th>
<th>Number of MCM Terminals</th>
<th>Number of Nets</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASE-1</td>
<td>9</td>
<td>870K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASE-2</td>
<td>14</td>
<td>1300K</td>
<td>2700</td>
<td>1457</td>
</tr>
<tr>
<td>CASE-3</td>
<td>26</td>
<td>2500K</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
1) CASE-2: Developed MCM
2) Clock Speed: max 200 MHz
VHDL Source

<table>
<thead>
<tr>
<th></th>
<th>Number of source lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bench</td>
<td>Testbench</td>
</tr>
<tr>
<td>LSI</td>
<td>LSI-A</td>
</tr>
<tr>
<td></td>
<td>LSI-B</td>
</tr>
<tr>
<td></td>
<td>LSI-C</td>
</tr>
<tr>
<td>MCM</td>
<td>CASE-1</td>
</tr>
<tr>
<td></td>
<td>CASE-2</td>
</tr>
<tr>
<td></td>
<td>CASE-3</td>
</tr>
</tbody>
</table>

Activities of our group

1) Educating engineers for VHDL design (more than 100 engineers).
2) Developing VHDL design environments.
 - developing VHDL libraries for simulator and logic synthesis tool.
 - developing design methodologies.
 - developing many useful support tools.
 - improving technique to use logic synthesis tool.
3) Cultivating of engineer's and manager's consciousness for VHDL design.
4) Continuing to design LSIs with this hybrid design methodology.
Requests to EDA vendor

1) Developing high abstraction logic synthesis
2) Developing formal verification tool between behavioral model and RTL model.
3) Free description style
 Don't force users to change VHDL description style, because user's purpose is not to use tools and users have their own description style.
4) Specifying limitations of tools.
 (e.g. gate size, the number of signals)
5) Training technical support engineers in JAPAN.

Conclusion

This presentation described a hybrid design methodology for LSI and Multichip Module (MCM) as an example of NEC's experiences. This methodology is very useful while logic synthesis tools are still poor.

It gives good results to apply VHDL to the design of LSI, printed wiring board and MCM. It will be tried to simulate the total system including software in the near future.