INTEGRATING OPERATIONAL SPECIFICATION AND PERFORMANCE MODELING

Sanjay Srinivasan, Ambar Sarkar
Ronald Waxman, Barry Johnson
Dept. of Electrical Engineering
University of Virginia
Charlottesville, VA 22903
(804)-982-2965
Email: ss8f@virginia.edu

Abstract

There are two important early stages in the design of complex systems, modeling of the system (operational) specification and modeling of the system performance. In this paper, we propose a link between operational specification and performance modeling via VHDL. We show by an example, how the models can be made to interact, yielding a synergy leading to design efficiency and improved modeling accuracy. While this paper does not provide concrete rules to solve the general problem of linking these two models, it justifies the usefulness of such a link through an example. The paper also presents some typical performance study scenarios to illustrate the use of the methodology. We hope that the work presented in the paper fuels further research in the area of linking operational specifications and performance modeling. Providing a link between Operational Specification and Performance Modeling will bridge the hitherto existing gap between these two stages of the design process.
Motivation

- **Overall Design Process**

<table>
<thead>
<tr>
<th>Operation Specification Model: enables simulation of the interaction between end user and system</th>
<th>Hybrid Modeling</th>
<th>Total System Modeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Model: enables simulation of information flow in system</td>
<td>Hybrid Modeling</td>
<td></td>
</tr>
<tr>
<td>Functional Model: enables simulation of data flow in the system, data is transformed appropriately by model elements</td>
<td>Mixed Level Functional Modeling</td>
<td></td>
</tr>
<tr>
<td>Algorithmic Structural</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Motivation

Two important stages
- Operational Specification
 - Simulatable description of system as seen by end user
 - State machine view of system
- Performance Model
 - Prediction and evaluation of system performance
 - Model of actual hardware/software at arbitrary levels of abstraction

- Hard to study system behavior from performance model because of lack of direct mapping between specification and implementation

- Hard to study performance issues from an operation specification

Motivation

Problems
- Current tools use different 'languages' for system description for different design phase
- Design process gets fragmented across languages and tools
- Makes the process very cumbersome and error-prone
- Need an integrated design tool that allows complete design (specification to final product) under a single umbrella

Solution
- Use VHDL as the language of description
- Link Operation Specification with Performance Modeling
- Hybrid Modeling
Why link Op Spec with Performance Models

- Provide continuity in the design process
- Op Spec provides an efficient and graphical method for specifying algorithms
- Performance models accurately depict the system hardware/software
- Model algorithms (control structure) via Statecharts while modeling hardware/software (data flow) via the Uninterpreted Modeling methodology

Center for Semicustom Integrated Systems, University of Virginia

Why link Op Spec with Performance Models

Advantages

- Designer not forced to work with complex performance models early in the design process
- Flexibility in changing and studying algorithms through a medium that is easy to use (graphical)
- Algorithms are more naturally expressed and viewed as finite state machines.

Center for Semicustom Integrated Systems, University of Virginia
Experiment

- Model a scheduling system
- Scheduling algorithm modeled as an Op Spec
- Hardware, Queues and Processors, modeled at the performance level
- Priority scheduling
- No preemption
- Multiple Qs, single server
- Op Spec via Statecharts; Performance model via Uninterpreted Modeling

Operation Specification Model of Total System

NI: No job in Queue, J: Job in queue
I: Processor Idle, B: Processor Busy
S: Success P: Fail

Center for Semicustom Integrated Systems, University of Virginia
Performance Model of Total System

Link Points

- Op Spec to Performance Model (PM)
 - Job selection
 - Processor selection
 - Data Converters

- PM to Op Spec
 - Processor status
 - Handshake signal
 - Probes
Results

Experiment 1

- Job processing time fixed: 100ns, 20ns and 50ns
- Vary Inter-arrival time
- Infinite Queue size
- For utilization measurement: Arrival time 30ns

Center for Semicustom Integrated Systems, University of Virginia
Results

Experiment II

- Inter-arrival time fixed at 50ns, 20ns and 35ns
- Vary job processing time (for all job types)
- Infinite Queue sizes

![Experiment 2](image)

Conclusions

<table>
<thead>
<tr>
<th>Operation Specification Model: enables simulation of the interaction between end user and system</th>
<th>Total System Modeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Model: enables simulation of information flow in systems</td>
<td>Hybrid Modeling</td>
</tr>
<tr>
<td>Functional Model: enables simulation of data flow in the system. Data is transformed functionally by model elements</td>
<td>Mixed Level Functional Modeling</td>
</tr>
<tr>
<td>Algorithmic Behavioral Structural</td>
<td>↓</td>
</tr>
</tbody>
</table>

- Methodology is useful in incremental design which includes the Operation Specification level of abstraction.
<table>
<thead>
<tr>
<th>Future Work</th>
</tr>
</thead>
</table>

- Test more complex examples
- Formalize the methods/techniques for the linking methodology and for link point identification
- Automate or semi-automate the link process