Comparison of Timing Approaches in VHDL

Victor Berman
Cadence Design Systems
2 Lowell Research Center
Lowell MA 01852
508 934 0276
berman@cadence.com

Agenda

- Current efforts in VHDL Timing
- Differing Goals?
- Developing Requirements
- Topics Under Discussion
- Plans for Progress
VHDL Timing Efforts

- IEEE Timing Working Group
- CFI Timing/Delay Data Constraints Working Group
 - Fitting timing into existing Data Model for Frame Works
 - Working with ASIC Library Representation Working Group
- VI Technical Committee
 - Put out Request for Proposals
- VITAL - industry initiative
 - Looking at re-use of existing timing methodology

No Single Approach Accepted Industry-Wide

Victor Berman

Do These Efforts Have Differing Goals?

- Coming at the problem from different angles
 - IEEE - general solution for VHDL timing
 - CFI - inter-tool communication for Frameworks
 - VI - industry common methodology
 - VITAL - rapid adoption through methodology re-use
- Differ in time frame and emphasis
- Basic Goals are the same

Victor Berman
IEEE Timing Working Group

• Goal - ASIC Library Sign-Off in VHDL
 • Deal with System timing later
• VHDL Orientation
• Issues
 • Data Model for Timing Specification
 • External File vs. All VHDL Representation
 • Modeling Guidelines

Victor Berman

CFI Timing/Delay Data Constraints Working

• Starting Point is 1.0 Data Model
• Language is secondary issue
• Interoperability of Tools Is Primary
 • Same Results from Different Vendors and Tools
 • Completeness of Data Model and Common Procedural Interface is Key
• Agreement on Phased Approach
 • First Define Data Model, Interchange Format, and PI
 • Leave Computational Model for Later Phase

Victor Berman
VI Modeling Technical Working Group

- Looking at Complete VHDL Modeling Issue
- Timing is essential - but other modeling issues addressed
- Group is in early stages
 - Request for Proposals Issued
 - Looking for a Solution That Can Gain Industry Wide Acceptance
 - Needs consensus from membership

VITAL Approach

- Industry Driven
- Method Based on Technology Re-Use
- Clear Goal of Near Term ASIC Library Availability
Developing Requirements

• Requirements Drive the Solution

• Each Group Uses Different Method
 • Generally Ad-Hoc and Dependent on Members of the Group
 • Can be the most difficult and time consuming part of process
 • Important to Have Clear Focus on Goal

• VITAL Decided on Different Approach
 • Survey ASIC Vendors
 • Abstract Requirements From Looking at Their Design Methodology
 • Iterate Findings to Assure Completeness, Correctness

Victor Berman

Developing Requirements

• Summary of ASIC Vendor Survey
 • Most Translate to Internal Format For Final Timing Checks
 • Accuracy of Models is Key Driving Element
 • Maintenance Costs Are More Important Than Development Costs
 • Simulation Speed is A Critical Factor

• Derived Requirements
 • Language is Secondary Issue
 • Single Common Data Format is Key to Accuracy and Maintenance
 • Common Building Block Approach Has Provided High Speed Simulation

Victor Berman
Topics Under Discussion

- Timing Model
- Exchange Format
- Primitive Building Blocks

SDF Abstract Delay Models

$Dev = \text{DEVICE}$ delays (Intrinsic delays)

$lorP = \text{INTERCONNECT}$ delays or PORT delays

$IO = \text{IOPATH}$ delays (Cell path delays)
Key Delay Types

- **I/O Path Delays**
 - Represents the delay between an input and an output
 - May be dependent on a specific type of "edge"
 - (Instance x.y.z)
 - (Delay (IOPATH (posedge i1) o1 < delay_spec>))
 - (IOPATH i2 o1 <delay_spec>))

- **Device Delays**
 - Associates a delay with an output port
 - It may be the same for all output ports on a device or specific to the port
 - (Instance x.a.b)
 - (Delay (DEVICE o1 < delay_spec>))

Key Delay Types

- **Interconnect Delays**
 - Represent wire path delays, estimated or actual
 - (Instance x)
 - (Delay (INTERCONNECT y.z.o1 w.i3< delay_spec>))

- **Port Delays**
 - Allows association of a delay directly with an IN port
 - Does not require an IN/OUT pair, thus generalizing the concept
 - (Instance x)
 - (Delay (PORT a.b.il < delay_spec>))
Comments on SDF

- Delay type shown are examples, others are defined and user defined delays can be supported
- Definition of CELLTYPES as well as specific instances provides flexibility
- Timing specifications are general, example shows min, typ, max - can also include conditional or edge sensitive delays
- Header Sections provides Configuration Management data
- Timing checks and constraints are also supported

SDF Current Limitations

- State Transitions Currently Based on ‘0’, ‘1’, ‘Z’
 - Most be generalized for “MVL-9”
 - Handling of ‘X’ transitions most be defined
 - Edge sensitivity most be generalized
- Naming And Syntax Issues Most Be Resolved
 - VHDL-92 Is Defining Syntax for Path_Names and Identifiers
 - Exchange Format Should Follow These New Rules
 - Extended Identifier Syntax Will Allow Traditional Part Names
SDF Information Model

- Work Being Done At University of Manchester
 - Zahir Moosa and Hilary Kahn - CAD Group
- Draft Currently Being Reviewed
- Will Help in Formalizing Specification
 - Defining Well Formed Semantic Model
 - Investigating Completeness and Consistency

Future Plans

- Coordinate Industry/Standards Groups
 - Maximize Synergy
 - Keep Sight of Positive Goals
- Complete ASIC Vendor Requirements Document
- Develop Proposal Based on Requirements
 - Modeling Guidelines
 - Standard Components - gates, cells
 - Timing Models
Conclusions

• Need for Improved Timing Methodology is Critical to VHDL Success
 • VITAL Initiative Has Sparked Wide Spread Interest
 • Several Industry Groups Working the Problem
 • Need Coordination for Different Perspectives

• SDF Format Useful
 • Flexible Representation of Common Timing Constructs
 • Promotes inter-tool communication
 • Needs Refinement for VHDL-92

• Common Industry Goal Should Lead to Success